14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pulmonary artery denervation improves pulmonary arterial hypertension induced right ventricular dysfunction by modulating the local renin-angiotensin-aldosterone system

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Pulmonary arterial hypertension (PAH) is commonly accompanied with the activation of the renin-angiotensin-aldosterone system (RAAS). Renal sympathetic denervation (RSD) reduces PAH partly through the inhibition of RAAS. Analogically, we hypothesized that pulmonary artery denervation (PADN) could reverse PAH and PAH-induced right ventricular (RV) dysfunction by downregulating the local RAAS activity.

          Methods

          Twenty-five beagle dogs were randomized into two groups: control group (intra-atrial injection of N-dimethylacetamide, 3 mg/kg, n = 6) and test group (intra-atrial injection of dehydrogenized-monocrotaline, 3 mg/kg, n = 19). Eight weeks later, dogs in the test group with mean pulmonary arterial pressure (mPAP) ≥25 mmHg ( n = 16) were reassigned into the sham ( n = 8) and PADN groups ( n = 8) by chance. After another 6 weeks, the hemodynamics, pulmonary tissue morphology and the local RAAS expression in lung and right heart tissue were measured.

          Results

          PADN reduced the mPAP (25.94 ± 3.67 mmHg vs 33.72 ± 5.76 mmHg, P < 0.05) and the percentage of medial wall thickness (%MWT) (31.0 ± 2.6 % vs 37.9 ± 2.8 %, P < 0.05) compared with the sham group. PADN attenuated RV dysfunction, marked with reduced atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and ratio of right ventricular to left ventricular plus septum weight [RV/(LV + S)]. Moreover, the local RAAS expression was activated in PAH dogs while inhibited after PADN.

          Conclusions

          PADN improves hemodynamics and relieves RV dysfunction in dogs with PAH, which can be associated with the downregulating RAAS activity in local tissue.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension.

          Pulmonary arterial hypertension (PAH) is a deadly disease in which vasoconstriction and vascular remodeling both lead to a progressive increase in pulmonary vascular resistance. The response of the right ventricle (RV) to the increased afterload is an important determinant of patient outcome. Little is known about the cellular and molecular mechanisms that underlie the transition from compensated hypertrophy to dilatation and failure that occurs during the course of the disease. Moreover, little is known about the direct effects of current PAH treatments on the heart. Although the increase in afterload is the first trigger for RV adaptation in PAH, neurohormonal signaling, oxidative stress, inflammation, ischemia, and cell death may contribute to the development of RV dilatation and failure. Here we review cellular signaling cascades and gene expression patterns in the heart that follow pressure overload. Most data are derived from research on the left ventricle, but where possible specific information on the RV response to pressure overload is provided. This overview identifies the gaps in our understanding of RV failure and attempts to fill them, when possible. Together with the online supplement, it provides a starting point for new research and aims to encourage the pulmonary hypertension research community to direct some of their attention to the RV, in parallel to their focus on the pulmonary vasculature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The angiotensin-converting enzyme gene family: genomics and pharmacology.

            Modulation of the renin-angiotensin system (RAS), and particularly inhibition of angiotensin-converting enzyme (ACE), a zinc metallopeptidase, has long been a prime strategy in the treatment of hypertension. However, other angiotensin metabolites are gaining in importance as our understanding of the RAS increases. Recently, genomic approaches have identified the first human homologue of ACE, termed ACEH (or ACE2). ACEH differs in specificity and physiological roles from ACE, which opens a potential new area for discovery biology. The gene that encodes collectrin, a homologue of ACEH, is upregulated in response to renal injury. Collectrin lacks a catalytic domain, which indicates that there is more to ACE-like function than simple peptide hydrolysis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Increased sympathetic nerve activity in pulmonary artery hypertension.

              This study tested the hypothesis that sympathetic nerve activity is increased in pulmonary artery hypertension (PAH), a rare disease of poor prognosis and incompletely understood pathophysiology. We subsequently explored whether chemoreflex activation contributes to sympathoexcitation in PAH. We measured muscle sympathetic nerve activity (MSNA) by microneurography, heart rate (HR), and arterial oxygen saturation (Sao(2)) in 17 patients with PAH and 12 control subjects. The patients also underwent cardiac echography, right heart catheterization, and a 6-minute walk test with dyspnea scoring. Circulating catecholamines were determined in 8 of the patients. Chemoreflex deactivation by 100% O(2) was assessed in 14 patients with the use of a randomized, double-blind, placebo-controlled, crossover study design. Compared with the controls, the PAH patients had increased MSNA (67+/-4 versus 40+/-3 bursts per minute; P<0.0001) and HR (82+/-4 versus 68+/-3 bpm; P=0.02). MSNA in the PAH patients was correlated with HR (r=0.64, P=0.006), Sao(2) (r=-0.53, P=0.03), the presence of pericardial effusion (r=0.51, P=0.046), and NYHA class (r=0.52, P=0.033). The PAH patients treated with prostacyclin derivatives had higher MSNA (P=0.009), lower Sao(2) (P=0.01), faster HR (P=0.003), and worse NYHA class (P=0.04). Plasma catecholamines were normal. Peripheral chemoreflex deactivation with hyperoxia increased Sao(2) (91.7+/-1% to 98.4+/-0.2%; P<0.0001) and decreased MSNA (67+/-5 to 60+/-4 bursts per minute; P=0.0015), thereby correcting approximately one fourth of the difference between PAH patients and controls. We report for the first time direct evidence of increased sympathetic nerve traffic in advanced PAH. Sympathetic hyperactivity in PAH is partially chemoreflex mediated and may be related to disease severity.
                Bookmark

                Author and article information

                Contributors
                liuchen199203@163.com
                jiangxiaomin1989@163.com
                yinyinye9157793@126.com
                lb52130220@126.com
                1134976849@qq.com
                xdjxdjxdjxdj@126.com
                huzuoying@aliyun.com
                Journal
                BMC Cardiovasc Disord
                BMC Cardiovasc Disord
                BMC Cardiovascular Disorders
                BioMed Central (London )
                1471-2261
                10 October 2016
                10 October 2016
                2016
                : 16
                : 192
                Affiliations
                [1 ]Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, 68# Changle Road, Nanjing, 210006 China
                [2 ]Division of Cardiology, Nanjing First Hospital, 68# Changle Road, Nanjing, 210006 China
                Article
                366
                10.1186/s12872-016-0366-4
                5057227
                27724864
                36097db9-8416-4913-9c3c-531874b20cbf
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 8 June 2016
                : 28 September 2016
                Funding
                Funded by: Jiangsu Provincial Special Program of Medical Science
                Award ID: BL2013001
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2016

                Cardiovascular Medicine
                pulmonary artery denervation,pulmonary arterial hypertension,right ventricular dysfunction,renin–angiotensin–aldosterone system

                Comments

                Comment on this article