84
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global, regional, and national causes of under-5 mortality in 2000–19: an updated systematic analysis with implications for the Sustainable Development Goals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Summary

          Background

          Causes of mortality are a crucial input for health systems for identifying appropriate interventions for child survival. We present an updated series of cause-specific mortality for neonates and children younger than 5 years from 2000 to 2019.

          Methods

          We updated cause-specific mortality estimates for neonates and children aged 1–59 months, stratified by level (low, moderate, or high) of mortality. We made a substantial change in the statistical methods used for previous estimates, transitioning to a Bayesian framework that includes a structure to account for unreported causes in verbal autopsy studies. We also used systematic covariate selection in the multinomial framework, gave more weight to nationally representative verbal autopsy studies using a random effects model, and included mortality due to tuberculosis.

          Findings

          In 2019, there were 5·30 million deaths (95% uncertainty range 4·92–5·68) among children younger than 5 years, primarily due to preterm birth complications (17·7%, 16·1–19·5), lower respiratory infections (13·9%, 12·0–15·1), intrapartum-related events (11·6%, 10·6–12·5), and diarrhoea (9·1%, 7·9–9·9), with 49·2% (47·3–51·9) due to infectious causes. Vaccine-preventable deaths, such as for lower respiratory infections, meningitis, and measles, constituted 21·7% (20·4–25·6) of under-5 deaths, and many other causes, such as diarrhoea, were preventable with low-cost interventions. Under-5 mortality has declined substantially since 2000, primarily because of a decrease in mortality due to lower respiratory infections, diarrhoea, preterm birth complications, intrapartum-related events, malaria, and measles. There is considerable variation in the extent and trends in cause-specific mortality across regions and for different strata of all-cause under-5 mortality.

          Interpretation

          Progress is needed to improve child health and end preventable deaths among children younger than 5 years. Countries should strategize how to reduce mortality among this age group using interventions that are relevant to their specific causes of death.

          Funding

          Bill & Melinda Gates Foundation; WHO.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals

          Summary Background Despite remarkable progress in the improvement of child survival between 1990 and 2015, the Millennium Development Goal (MDG) 4 target of a two-thirds reduction of under-5 mortality rate (U5MR) was not achieved globally. In this paper, we updated our annual estimates of child mortality by cause to 2000–15 to reflect on progress toward the MDG 4 and consider implications for the Sustainable Development Goals (SDG) target for child survival. Methods We increased the estimation input data for causes of deaths by 43% among neonates and 23% among 1–59-month-olds, respectively. We used adequate vital registration (VR) data where available, and modelled cause-specific mortality fractions applying multinomial logistic regressions using adequate VR for low U5MR countries and verbal autopsy data for high U5MR countries. We updated the estimation to use Plasmodium falciparum parasite rate in place of malaria index in the modelling of malaria deaths; to use adjusted empirical estimates instead of modelled estimates for China; and to consider the effects of pneumococcal conjugate vaccine and rotavirus vaccine in the estimation. Findings In 2015, among the 5·9 million under-5 deaths, 2·7 million occurred in the neonatal period. The leading under-5 causes were preterm birth complications (1·055 million [95% uncertainty range (UR) 0·935–1·179]), pneumonia (0·921 million [0·812 −1·117]), and intrapartum-related events (0·691 million [0·598 −0·778]). In the two MDG regions with the most under-5 deaths, the leading cause was pneumonia in sub-Saharan Africa and preterm birth complications in southern Asia. Reductions in mortality rates for pneumonia, diarrhoea, neonatal intrapartum-related events, malaria, and measles were responsible for 61% of the total reduction of 35 per 1000 livebirths in U5MR in 2000–15. Stratified by U5MR, pneumonia was the leading cause in countries with very high U5MR. Preterm birth complications and pneumonia were both important in high, medium high, and medium child mortality countries; whereas congenital abnormalities was the most important cause in countries with low and very low U5MR. Interpretation In the SDG era, countries are advised to prioritise child survival policy and programmes based on their child cause-of-death composition. Continued and enhanced efforts to scale up proven life-saving interventions are needed to achieve the SDG child survival target. Funding Bill & Melinda Gates Foundation, WHO.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

            Summary Background Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding Bill & Melinda Gates Foundation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Impact of the COVID-19 Pandemic on Emergency Department Visits — United States, January 1, 2019–May 30, 2020

              On March 13, 2020, the United States declared a national emergency to combat coronavirus disease 2019 (COVID-19). As the number of persons hospitalized with COVID-19 increased, early reports from Austria ( 1 ), Hong Kong ( 2 ), Italy ( 3 ), and California ( 4 ) suggested sharp drops in the numbers of persons seeking emergency medical care for other reasons. To quantify the effect of COVID-19 on U.S. emergency department (ED) visits, CDC compared the volume of ED visits during four weeks early in the pandemic March 29–April 25, 2020 (weeks 14 to 17; the early pandemic period) to that during March 31–April 27, 2019 (the comparison period). During the early pandemic period, the total number of U.S. ED visits was 42% lower than during the same period a year earlier, with the largest declines in visits in persons aged ≤14 years, females, and the Northeast region. Health messages that reinforce the importance of immediately seeking care for symptoms of serious conditions, such as myocardial infarction, are needed. To minimize SARS-CoV-2, the virus that causes COVID-19, transmission risk and address public concerns about visiting the ED during the pandemic, CDC recommends continued use of virtual visits and triage help lines and adherence to CDC infection control guidance. To assess trends in ED visits during the pandemic, CDC analyzed data from the National Syndromic Surveillance Program (NSSP), a collaborative network developed and maintained by CDC, state and local health departments, and academic and private sector health partners to collect electronic health data in real time. The national data in NSSP includes ED visits from a subset of hospitals in 47 states (all but Hawaii, South Dakota, and Wyoming), capturing approximately 73% of ED visits in the United States able to be analyzed at the national level. During the most recent week, 3,552 EDs reported data. Total ED visit volume, as well as patient age, sex, region, and reason for visit were analyzed. Weekly number of ED visits were examined during January 1, 2019–May 30, 2020. In addition, ED visits during two 4-week periods were compared using mean differences and ratios. The change in mean visits per week during the early pandemic period and the comparison period was calculated as the mean difference in total visits in a diagnostic category between the two periods, divided by 4 weeks ([visits in diagnostic category {early pandemic period} – visits in diagnostic category {comparison period}]/4). The visit prevalence ratio (PR) was calculated for each diagnostic category as the proportion of ED visits during the early pandemic period divided by the proportion of visits during the comparison period ([visits in category {early pandemic period}/all visits {early pandemic period}]/[visits in category {comparison period}/all visits {comparison period}]). All analyses were conducted using R software (version 3.6.0; R Foundation). Reason for visit was analyzed using a subset of records that had at least one specific, billable International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) code. In addition to Hawaii, South Dakota, and Wyoming, four states (Florida, Louisiana, New York outside New York City, and Oklahoma), two California counties reporting to the NSSP (Santa Cruz and Solano), and the District of Columbia were also excluded from the diagnostic code analysis because they did not report diagnostic codes during both periods or had differences in completeness of codes between 2019 and 2020. Among eligible visits for the diagnostic code analysis, 20.3% without a valid ICD-10-CM code were excluded. ED visits were categorized using the Clinical Classifications Software Refined tool (version 2020.2; Healthcare Cost and Utilization Project), which combines ICD-10-CM codes into clinically meaningful groups ( 5 ). A visit with multiple ICD-10-CM codes could be included in multiple categories; for example, a visit by a patient with diabetes and hypertension would be included in the category for diabetes and the category for hypertension. Because COVID-19 is not yet classified in this tool, a custom category, defined as any visit with the ICD-10-CM code for confirmed COVID-19 diagnosis (U07.1), was created ( 6 ). The analysis was limited to the top 200 diagnostic categories during each period. The lowest number of visits reported to NSSP occurred during April 12–18, 2020 (week 16). Although visits have increased since the nadir, the most recent complete week (May 24–30, week 22) remained 26% below the corresponding week in 2019 (Figure 1). The number of ED visits decreased 42%, from a mean of 2,099,734 per week during March 31–April 27, 2019, to a mean of 1,220,211 per week during the early pandemic period of March 29–April 25, 2020. Visits declined for every age group (Figure 2), with the largest proportional declines in visits by children aged ≤10 years (72%) and 11–14 years (71%). Declines in ED visits varied by U.S. Department of Health and Human Services region,* with the largest declines in the Northeast (Region 1, 49%) and in the region that includes New Jersey and New York (Region 2, 48%) (Figure 2). Visits declined 37% among males and 45% among females across all NSSP EDs between the comparison and early pandemic periods. FIGURE 1 Weekly number of emergency department (ED) visits — National Syndromic Surveillance Program, United States,* January 1, 2019– May 30, 2020† * Hawaii, South Dakota, and Wyoming are not included. † Vertical lines indicate the beginning and end of the 4-week coronavirus disease 2019 (COVID-19) early pandemic period (March 29–April 25, 2020) and the comparison period (March 31–April 27, 2019). The figure is a line graph showing the weekly number of emergency department visits, using data from the National Syndromic Surveillance Program, in the United States, during January 1, 2019–May 30, 2020. FIGURE 2 Emergency department (ED) visits, by age group (A) and U.S. Department of Health and Human Services (HHS) region* (B) — National Syndromic Surveillance Program, United States,† March 31–April 27, 2019 (comparison period) and March 29–April 25, 2020 (early pandemic period) * Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont; Region 2: New Jersey and New York; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, and West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, and Texas; Region 7: Iowa, Kansas, Missouri, and Nebraska; Region 8: Colorado, Montana, North Dakota, and Utah; Region 9: Arizona, California, and Nevada; Region 10: Alaska, Idaho, Oregon, and Washington. † Hawaii, South Dakota, and Wyoming are not included. The figure is a bar chart showing the emergency department visits, by age group and U.S. Department of Health and Human Services region, using data from the National Syndromic Surveillance Program, in the United States, during March 31–April 27, 2019 (comparison period) and March 29–April 25, 2020 (pandemic period). Among all ages, an increase of >100 mean visits per week from the comparison period to the early pandemic period occurred in eight of the top 200 diagnostic categories (Table). These included 1) exposure, encounters, screening, or contact with infectious disease (mean increase 18,834 visits per week); 2) COVID-19 (17,774); 3) other general signs and symptoms (4,532); 4) pneumonia not caused by tuberculosis (3,911); 5) other specified and unspecified lower respiratory disease (1,506); 6) respiratory failure, insufficiency, or arrest (776); 7) cardiac arrest and ventricular fibrillation (472); and 8) socioeconomic or psychosocial factors (354). The largest declines were in visits for abdominal pain and other digestive or abdomen signs and symptoms (–66,456), musculoskeletal pain excluding low back pain (–52,150), essential hypertension (–45,184), nausea and vomiting (–38,536), other specified upper respiratory infections (–36,189), sprains and strains (–33,709), and superficial injuries (–30,918). Visits for nonspecific chest pain were also among the top 20 diagnostic categories for which visits decreased (–24,258). Although not in the top 20 declining diagnoses, visits for acute myocardial infarction also declined (–1,156). TABLE Differences in mean weekly numbers of emergency department (ED) visits* for diagnostic categories with the largest increases or decreases† and prevalence ratios§ comparing the proportion of ED visits in each diagnostic category, for categories with the highest and lowest ratios — National Syndromic Surveillance Program, United States,¶ March 31–April 27, 2019 (comparison period) and March 29–April 25, 2020 (early pandemic period) Diagnostic category Change in mean no. of weekly ED visits* Prevalence ratio (95% CI)§ All categories with higher visit counts during the early pandemic period Exposure, encounters, screening, or contact with infectious disease** 18,834 3.79 (3.76–3.83) COVID-19 17,774 — Other general signs and symptoms** 4,532 1.87 (1.86–1.89) Pneumonia (except that caused by tuberculosis)** 3,911 1.91 (1.90–1.93) Other specified and unspecified lower respiratory disease** 1,506 1.99 (1.96–2.02) Respiratory failure, insufficiency, arrest** 776 1.76 (1.74–1.78) Cardiac arrest and ventricular fibrillation** 472 1.98 (1.93–2.03) Socioeconomic or psychosocial factors** 354 1.78 (1.75–1.81) Other top 10 highest prevalence ratios Mental and substance use disorders, in remission** 6 1.69 (1.64–1.75) Other specified encounters and counseling** 22 1.69 (1.67–1.72) Stimulant-related disorders** −189 1.65 (1.62–1.67) Top 20 categories with lower visit counts during the early pandemic period Abdominal pain and other digestive or abdomen signs and symptoms −66,456 0.93 (0.93–0.93) Musculoskeletal pain, not low back pain −52,150 0.81 (0.81–0.82) Essential hypertension −45,184 1.11 (1.10–1.11) Nausea and vomiting −38,536 0.85 (0.84–0.85) Other specified upper respiratory infections −36,189 0.82 (0.81–0.82) Sprains and strains, initial encounter †† −33,709 0.61 (0.61–0.62) Superficial injury; contusion, initial encounter −30,918 0.85 (0.84–0.85) Personal or family history of disease −28,734 1.21 (1.20–1.22) Headache, including migraine −27,458 0.85 (0.84–0.85) Other unspecified injury −25,974 0.84 (0.83–0.84) Nonspecific chest pain −24,258 1.20 (1.20–1.21) Tobacco-related disorders −23,657 1.19 (1.18–1.19) Urinary tract infections −23,346 1.02 (1.02–1.03) Asthma −20,660 0.91 (0.90–0.91) Disorders of lipid metabolism −20,145 1.12 (1.11–1.13) Spondylopathies/Spondyloarthropathy (including infective) −19,441 0.78 (0.77–0.79) Otitis media †† −17,852 0.35 (0.34–0.36) Diabetes mellitus without complication −15,893 1.10 (1.10–1.11) Skin and subcutaneous tissue infections −15,598 1.01 (1.00–1.02) Chronic obstructive pulmonary disease and bronchiectasis −15,520 1.05 (1.04–1.06) Other top 10 lowest prevalence ratios Influenza †† −12,094 0.16 (0.15–0.16) No immunization or underimmunization †† −1,895 0.28 (0.27–0.30) Neoplasm-related encounters †† −1,926 0.40 (0.39–0.42) Intestinal infection †† −5,310 0.52 (0.51–0.54) Cornea and external disease †† −9,096 0.54 (0.53–0.55) Sinusitis †† −7,283 0.55 (0.54–0.56) Acute bronchitis †† −15,470 0.59 (0.58–0.60) Noninfectious gastroenteritis †† −11,572 0.63 (0.62–0.64) Abbreviations: CI = confidence interval; COVID-19 = coronavirus disease 2019. * The change in visits per week during the early pandemic and comparison periods was calculated as the difference in total visits between the two periods, divided by 4 weeks ([visits in diagnostic category, {early pandemic period} – visits in diagnostic category, {comparison period}] / 4). † Analysis is limited to the 200 most common diagnostic categories. All eight diagnostic categories with an increase of >100 in the mean number of visits nationwide in the early pandemic period are shown. The top 20 categories with decreasing visit counts are shown. § Ratio calculated as the proportion of all ED visits in each diagnostic category during the early pandemic period, divided by the proportion of all ED visits in that category during the comparison period ([visits in category {early pandemic period}/all visits {early pandemic period})/(visits in category {comparison period}/all visits {comparison period}]). Ratios >1 indicate a higher proportion of visits in that category during the early pandemic period than the comparison period; ratios <1 indicate a lower proportion during the early pandemic than during the comparison period. Analysis is limited to the 200 most common diagnostic categories. The 10 categories with the highest and lowest ratios are shown. ¶ Florida, Hawaii, Louisiana, New York outside of New York City, Oklahoma, South Dakota, Wyoming, Santa Cruz and Solano counties in California, and the District of Columbia are not included. ** Top 10 highest prevalence ratios; higher proportion of visits in the early pandemic period than the comparison period. †† Top 10 lowest prevalence ratios; lower proportion of visits in the early pandemic period than the comparison period. During the early pandemic period, the proportion of ED visits for exposure, encounters, screening, or contact with infectious disease compared with total visits was nearly four times as large as during the comparison period (Table) (prevalence ratio [PR] = 3.79, 95% confidence interval [CI] = 3.76–3.83). The other diagnostic categories with the highest proportions of visits during the early pandemic compared with the comparison period were other specified and unspecified lower respiratory disease, which did not include influenza, pneumonia, asthma, or bronchitis (PR = 1.99; 95% CI = 1.96–2.02), cardiac arrest and ventricular fibrillation (PR = 1.98; 95% CI = 1.93–2.03), and pneumonia not caused by tuberculosis (PR = 1.91; 95% CI = 1.90–1.93). Diagnostic categories that were recorded less commonly during the early pandemic period included influenza (PR = 0.16; 95% CI = 0.15–0.16), no immunization or underimmunization (PR = 0.28; 95% CI = 0.27–0.30), otitis media (PR = 0.35; 95% CI = 0.34–0.36), and neoplasm-related encounters (PR = 0.40; 95% CI = 0.39–0.42). In the 2019 comparison period, 12% of all ED visits were in children aged ≤10 years old, compared with 6% during the early pandemic period. Among children aged ≤10 years, the largest declines were in visits for influenza (97% decrease), otitis media (85%), other specified upper respiratory conditions (84%), nausea and vomiting (84%), asthma (84%), viral infection (79%), respiratory signs and symptoms (78%), abdominal pain and other digestive or abdomen symptoms (78%), and fever (72%). Mean weekly visits with confirmed COVID-19 diagnoses and screening for infectious disease during the early pandemic period were lower among children than among adults. Among all ages, the diagnostic categories with the largest changes (abdominal pain and other digestive or abdomen signs and symptoms, musculoskeletal pain, and essential hypertension) were the same in males and females, but declines in those categories were larger in females than males. Females also had large declines in visits for urinary tract infections (–19,833 mean weekly visits). Discussion During an early 4-week interval in the COVID-19 pandemic, ED visits were substantially lower than during the same 4-week period during the previous year; these decreases were especially pronounced for children and females and in the Northeast. In addition to diagnoses associated with lower respiratory disease, pneumonia, and difficulty breathing, the number and ratio of visits (early pandemic period versus comparison period) for cardiac arrest and ventricular fibrillation increased. The number of visits for conditions including nonspecific chest pain and acute myocardial infarction decreased, suggesting that some persons could be delaying care for conditions that might result in additional mortality if left untreated. Some declines were in categories including otitis media, superficial injuries, and sprains and strains that can often be managed through primary or urgent care. Future analyses will help clarify the proportion of the decline in ED visits that were not preventable or avoidable such as those for life-threatening conditions, those that were manageable through primary care, and those that represented actual reductions in injuries or illness attributable to changing activity patterns during the pandemic (such as lower risks for occupational and motor vehicle injuries or other infectious diseases). The striking decline in ED visits nationwide, with the highest declines in regions where the pandemic was most severe in April 2020, suggests that the pandemic has altered the use of the ED by the public. Persons who use the ED as a safety net because they lack access to primary care and telemedicine might be disproportionately affected if they avoid seeking care because of concerns about the infection risk in the ED. Syndromic surveillance has important strengths, including automated electronic reporting and the ability to track outbreaks in real time ( 7 ). Among all visits, 74% are reported within 24 hours, with 75% of discharge diagnoses typically added to the record within 1 week. The findings in this report are subject to at least four limitations. First, hospitals reporting to NSSP change over time as facilities are added, and more rarely, as they close ( 8 ). An average of 3,173 hospitals reported to NSSP nationally in April 2019, representing an estimated 66% of U.S. ED visits, and an average of 3,467 reported in April 2020, representing 73% of ED visits. Second, diagnostic categories rely on the use of specific codes, which were missing in 20% of visits and might be used inconsistently across hospitals and providers, which could result in misclassification. The COVID-19 diagnosis code was introduced recently (April 1, 2020) and timing of uptake might have differed across hospitals ( 6 ). Third, NSSP coverage is not uniform across or within all states; in some states nearly all hospitals report, whereas in others, a lower proportion statewide or only those in certain counties report. Finally, because this analysis is limited to ED visit data, the proportion of persons who did not visit EDs but received treatment elsewhere is not captured. Health care systems should continue to address public concern about exposure to SARS-CoV-2 in the ED through adherence to CDC infection control recommendations, such as immediately screening every person for fever and symptoms of COVID-19, and maintaining separate, well-ventilated triage areas for patients with and without signs and symptoms of COVID-19 ( 9 ). Wider access is needed to health messages that reinforce the importance of immediately seeking care for serious conditions for which ED visits cannot be avoided, such as symptoms of myocardial infarction. Expanded access to triage telephone lines that help persons rapidly decide whether they need to go to an ED for symptoms of possible COVID-19 infection and other urgent conditions is also needed. For conditions that do not require immediate care or in-person treatment, health care systems should continue to expand the use of virtual visits during the pandemic ( 10 ). Summary What is already known about this topic? The National Syndromic Surveillance Program (NSSP) collects electronic health data in real time. What is added by this report? NSSP found that emergency department (ED) visits declined 42% during the early COVID-19 pandemic, from a mean of 2.1 million per week (March 31–April 27, 2019) to 1.2 million (March 29–April 25, 2020), with the steepest decreases in persons aged ≤14 years, females, and the Northeast. The proportion of infectious disease–related visits was four times higher during the early pandemic period. What are the implications for public health practice? To minimize SARS-CoV-2 transmission risk and address public concerns about visiting the ED during the pandemic, CDC recommends continued use of virtual visits and triage help lines and adherence to CDC infection control guidance.
                Bookmark

                Author and article information

                Contributors
                Journal
                Lancet Child Adolesc Health
                Lancet Child Adolesc Health
                The Lancet. Child & Adolescent Health
                Elsevier Ltd
                2352-4642
                2352-4650
                1 February 2022
                February 2022
                : 6
                : 2
                : 106-115
                Affiliations
                [a ]Department of International Health, Johns Hopkins University, Baltimore, MD, USA
                [b ]Department of Population, Family, and Reproductive Health, Johns Hopkins University, Baltimore, MD, USA
                [c ]Epidemiology and Population Health, London School of Tropical Medicine & Hygiene, London, UK
                [d ]Department of Maternal, Newborn, Child and Adolescent Health and Ageing, World Health Organization, Geneva, Switzerland
                Author notes
                [* ]Correspondence to: Dr Li Liu, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA lliu26@ 123456jhu.edu
                [†]

                Joint senior authors

                Article
                S2352-4642(21)00311-4
                10.1016/S2352-4642(21)00311-4
                8786667
                34800370
                360c5c6e-8be6-4b72-9dfb-772a0cdb86fc
                © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                Categories
                Articles

                Comments

                Comment on this article