58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Taurolidine cooperates with antineoplastic drugs in neuroblastoma cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuroblastoma is the most common extracranial tumor in childhood. Outcome of stage 4 disease remains poor and the development of novel therapeutic approaches is thus urgently needed. Taurolidine (TRD), originally invented to avoid catheter infections, has shown to exhibit antineoplastic activity in various cancers. The growth of neuroblastoma cell lines is inhibited by TRD as recently demonstrated. Further analysis disclosed a significant negative growth effect of TRD on the four neuroblastoma cell lines SH-EP TET21N, SK-N-AS, SK-N-BE(2)-M17 and SK-N-SH. Detected IC 50 (51-274 μM; 48 h) are promising and correspond to clinically-achievable plasma levels. Apoptosis was induced (76-86%; 48 h) in a time-dependent manner mediated by a simultaneous activation of the intrinsic and extrinsic pathways. This was confirmed by cleavage of caspases -3, -8 and -9 and abrogation of apoptosis by pan-caspase inhibition. Application of TRD resulted in a significant enhancement of cytotoxic drugs vincristine/doxorubicin (2/3 of 4 cell lines) making TRD a promising candidate to be included in neuroblastoma therapy regimens in the future.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          Recent advances in neuroblastoma.

          John Maris (2010)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis.

            We report here that BID, a BH3 domain-containing proapoptotic Bcl2 family member, is a specific proximal substrate of Casp8 in the Fas apoptotic signaling pathway. While full-length BID is localized in cytosol, truncated BID (tBID) translocates to mitochondria and thus transduces apoptotic signals from cytoplasmic membrane to mitochondria. tBID induces first the clustering of mitochondria around the nuclei and release of cytochrome c independent of caspase activity, and then the loss of mitochondrial membrane potential, cell shrinkage, and nuclear condensation in a caspase-dependent fashion. Coexpression of BclxL inhibits all the apoptotic changes induced by tBID. Our results indicate that BID is a mediator of mitochondrial damage induced by Casp8.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V.

              In the early stages of apoptosis changes occur at the cell surface, which until now have remained difficult to recognize. One of these plasma membrane alterations is the translocation of phosphatidylserine (PS) from the inner side of the plasma membrane to the outer layer, by which PS becomes exposed at the external surface of the cell. Annexin V is a Ca2+ dependent phospholipid-binding protein with high affinity for PS. Hence this protein can be used as a sensitive probe for PS exposure upon the cell membrane. Translocation of PS to the external cell surface is not unique to apoptosis, but occurs also during cell necrosis. The difference between these two forms of cell death is that during the initial stages of apoptosis the cell membrane remains intact, while at the very moment that necrosis occurs the cell membrane looses its integrity and becomes leaky. Therefore the measurement of Annexin V binding to the cell surface as indicative for apoptosis has to be performed in conjunction with a dye exclusion test to establish integrity of the cell membrane. This paper describes the results of such an assay, as obtained in cultured HSB-2 cells, rendered apoptotic by irradiation and in human lymphocytes, following dexamethasone treatment. Untreated and treated cells were evaluated for apoptosis by light microscopy, by measuring the amount of hypo-diploid cells using of DNA flow cytometry (FCM) and by DNA electrophoresis to establish whether or not DNA fragmentation had occurred. Annexin V binding was assessed using bivariate FCM, and cell staining was evaluated with fluorescein isothiocyanate (FITC)-labelled Annexin V (green fluorescence), simultaneously with dye exclusion of propidium iodide (PI) (negative for red fluorescence). The test described, discriminates intact cells (FITC-/PI-), apoptotic cells (FITC+/PI-) and necrotic cells (FITC+/PI+). In comparison with existing traditional tests the Annexin V assay is sensitive and easy to perform. The Annexin V assay offers the possibility of detecting early phases of apoptosis before the loss of cell membrane integrity and permits measurements of the kinetics of apoptotic death in relation to the cell cycle. More extensive FCM will allow discrimination between different cell subpopulations, that may or may not be involved in the apoptotic process.
                Bookmark

                Author and article information

                Journal
                Genes Cancer
                Genes Cancer
                ImpactJ
                Genes & Cancer
                Impact Journals LLC
                1947-6019
                1947-6027
                November 2014
                November 2014
                : 5
                : 11-12
                : 460-469
                Affiliations
                1 Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
                Author notes
                Correspondence to: Georg Eschenburg, g.eschenburg@ 123456uke.de
                Article
                4279442
                36133631-073e-4166-b49a-d0599d0d21d3
                Copyright: © 2014 Eschenburg et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 September 2014
                : 8 October 2014
                Categories
                Research Paper

                Oncology & Radiotherapy
                neuroblastoma,apoptosis,vincristine,doxorubicin,experimental therapies
                Oncology & Radiotherapy
                neuroblastoma, apoptosis, vincristine, doxorubicin, experimental therapies

                Comments

                Comment on this article