37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exposure to Heavy Ion Radiation Induces Persistent Oxidative Stress in Mouse Intestine

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ionizing radiation-induced oxidative stress is attributed to generation of reactive oxygen species (ROS) due to radiolysis of water molecules and is short lived. Persistent oxidative stress has also been observed after radiation exposure and is implicated in the late effects of radiation. The goal of this study was to determine if long-term oxidative stress in freshly isolated mouse intestinal epithelial cells (IEC) is dependent on radiation quality at a dose relevant to fractionated radiotherapy. Mice (C57BL/6J; 6 to 8 weeks; female) were irradiated with 2 Gy of γ-rays, a low-linear energy transfer (LET) radiation, and intestinal tissues and IEC were collected 1 year after radiation exposure. Intracellular ROS, mitochondrial function, and antioxidant activity in IEC were studied by flow cytometry and biochemical assays. Oxidative DNA damage, cell death, and mitogenic activity in IEC were assessed by immunohistochemistry. Effects of γ radiation were compared to 56Fe radiation (iso-toxic dose: 1.6 Gy; energy: 1000 MeV/nucleon; LET: 148 keV/µm), we used as representative of high-LET radiation, since it's one of the important sources of high Z and high energy (HZE) radiation in cosmic rays. Radiation quality affected the level of persistent oxidative stress with higher elevation of intracellular ROS and mitochondrial superoxide in high-LET 56Fe radiation compared to unirradiated controls and γ radiation. NADPH oxidase activity, mitochondrial membrane damage, and loss of mitochondrial membrane potential were greater in 56Fe-irradiated mice. Compared to γ radiation oxidative DNA damage was higher, cell death ratio was unchanged, and mitotic activity was increased after 56Fe radiation. Taken together our results indicate that long-term functional dysregulation of mitochondria and increased NADPH oxidase activity are major contributing factors towards heavy ion radiation-induced persistent oxidative stress in IEC with potential for neoplastic transformation.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Persistent oxidative stress in cancer.

          DNA of cancers such as renal cell carcinoma and mammary invasive ductal carcinoma, is persistently exposed to more oxidative stress than that of adjacent normal tissue. We suggest that the concept of 'persistent oxidative stress in cancer' may open up a new research area, explaining part of the characteristic tumor biology of cancer such as activated transcription factors and proto-oncogenes, genomic instability, chemotherapy-resistance, invasion and metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heavy ion carcinogenesis and human space exploration.

            Before the human exploration of Mars or long-duration missions on the Earth's moon, the risk of cancer and other diseases from space radiation must be accurately estimated and mitigated. Space radiation, comprised of energetic protons and heavy nuclei, has been shown to produce distinct biological damage compared with radiation on Earth, leading to large uncertainties in the projection of cancer and other health risks, and obscuring evaluation of the effectiveness of possible countermeasures. Here, we describe how research in cancer radiobiology can support human missions to Mars and other planets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Initial events in the cellular effects of ionizing radiations: clustered damage in DNA.

              General correlations are found between the detailed spatial and temporal nature of the initial physical features of radiation insult and the likelihood of final biological consequences. These persist despite the chain of physical, chemical and biological processes that eliminate the vast majority of the early damage. Details of the initial conditions should provide guidance to critical features of the most relevant early biological damage and subsequent repair. Ionizing radiations produce many hundreds of different simple chemical products in DNA and also multitudes of possible clustered combinations. The simple products, including single-strand breaks, tend to correlate poorly with biological effectiveness. Even for initial double-strand breaks, as a broad class, there is apparently little or no increase in yield with increasing ionization density, in contrast with the large rise in relative biological effectiveness for cellular effects. Track structure analysis has revealed that clustered DNA damage of severity greater than simple double-strand breaks is likely to occur at biologically relevant frequencies with all ionizing radiations. Studies are in progress to describe in more detail the chemical nature of these clustered lesions and to consider the implications for cellular repair. It has been hypothesized that there is reduced repair of the more severe examples and that the spectrum of lesions that dominate the final cellular consequences is heavily skewed towards the more severe, clustered components.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                24 August 2012
                : 7
                : 8
                : e42224
                Affiliations
                [1 ]Department of Biochemistry and Molecular and Cell Biology, Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, D.C., United States of America
                [2 ]Department of Pathology, Georgetown University Medical Center, Washington, D.C., United States of America
                [3 ]Center of Excellence In Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
                National Taiwan University, Taiwan
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: KD. Performed the experiments: KD SS. Analyzed the data: KD SS BK. Contributed reagents/materials/analysis tools: KD SS BK AF. Wrote the paper: KD SS AF.

                Article
                PONE-D-12-10169
                10.1371/journal.pone.0042224
                3427298
                22936983
                3614a85f-0d9f-441c-8df1-a63716125f32
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 9 April 2012
                : 2 July 2012
                Page count
                Pages: 12
                Funding
                This work is supported in part by National Aeronautics and Space Administration (NASA) Grants NNX07AH70G and NNX09AU95G. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding received for this study.
                Categories
                Research Article
                Astronomical Sciences
                Space Exploration
                Biology
                Anatomy and Physiology
                Biochemistry
                Bioenergetics
                Energy-Producing Organelles
                Biophysics
                Model Organisms
                Animal Models
                Mouse
                Molecular Cell Biology
                Cellular Types
                Epithelial Cells
                Cellular Stress Responses
                Radiobiology
                Toxicology
                Medicine
                Gastroenterology and Hepatology
                Oncology
                Radiology
                Physics
                High-Energy Physics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article