+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Attempt to Polarize Human Neutrophils Toward N1 and N2 Phenotypes in vitro


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Neutrophils act as the first line of defense against invading pathogens. Although traditionally considered in context of their antimicrobial effector functions, the importance of tumor-associated neutrophils (TANs) in the development of cancer has become increasingly clear during the last decade. With regard to their high plasticity, neutrophils were shown to acquire an anti-tumorigenic N1 or a pro-tumorigenic N2 phenotype. Despite the urgent need to get a comprehensive understanding of the interaction of TANs with their tumor microenvironment, most studies still rely on murine tumor models. Here we present for the first time a polarization attempt to generate N1 and N2 neutrophils from primary human neutrophils in vitro. Our results underscore that N1-polarized neutrophils have a pro-inflammatory phenotype characterized among others by a higher level of intercellular adhesion molecule (ICAM)-1 and high secretion of interferon (IFN)γ-induced protein 10 (IP-10)/C-X-C motif chemokine 10 (CXCL10) and tumor necrosis factor (TNF). Further, we demonstrate that neutrophils incubated under a tumor-mimicking in vitro environment show a high cell surface expression of C-X-C motif chemokine receptor 2 (CXCR2) and secrete high levels of interleukin (IL)-8. These findings suggest that it is feasible to polarize blood-derived primary human neutrophils toward N1- and N2-like phenotypes in vitro. Further, we hypothesized that the presence of anti-inflammatory neutrophil phenotype is not a phenomenon limited to cancer but also occurs when neutrophils are infected with intracellular pathogens. Indeed, our findings indicate that N2-polarized neutrophils exert a markedly decreased capacity to kill the protozoan parasite Leishmania donovani and therefore permit parasite persistence.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Neutrophils in cancer: neutral no more.

          Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types?

            Neutrophils are the most abundant leukocytes in the circulation, and have been regarded as first line of defense in the innate arm of the immune system. They capture and destroy invading microorganisms, through phagocytosis and intracellular degradation, release of granules, and formation of neutrophil extracellular traps after detecting pathogens. Neutrophils also participate as mediators of inflammation. The classical view for these leukocytes is that neutrophils constitute a homogenous population of terminally differentiated cells with a unique function. However, evidence accumulated in recent years, has revealed that neutrophils present a large phenotypic heterogeneity and functional versatility, which place neutrophils as important modulators of both inflammation and immune responses. Indeed, the roles played by neutrophils in homeostatic conditions as well as in pathological inflammation and immune processes are the focus of a renovated interest in neutrophil biology. In this review, I present the concept of neutrophil phenotypic and functional heterogeneity and describe several neutrophil subpopulations reported to date. I also discuss the role these subpopulations seem to play in homeostasis and disease.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Targeting adenosine for cancer immunotherapy

              Immune checkpoint antagonists (CTLA-4 and PD-1/PD-L1) and CAR T-cell therapies generate unparalleled durable responses in several cancers and have firmly established immunotherapy as a new pillar of cancer therapy. To extend the impact of immunotherapy to more patients and a broader range of cancers, targeting additional mechanisms of tumor immune evasion will be critical. Adenosine signaling has emerged as a key metabolic pathway that regulates tumor immunity. Adenosine is an immunosuppressive metabolite produced at high levels within the tumor microenvironment. Hypoxia, high cell turnover, and expression of CD39 and CD73 are important factors in adenosine production. Adenosine signaling through the A2a receptor expressed on immune cells potently dampens immune responses in inflamed tissues. In this article, we will describe the role of adenosine signaling in regulating tumor immunity, highlighting potential therapeutic targets in the pathway. We will also review preclinical data for each target and provide an update of current clinical activity within the field. Together, current data suggest that rational combination immunotherapy strategies that incorporate inhibitors of the hypoxia-CD39-CD73-A2aR pathway have great promise for further improving clinical outcomes in cancer patients.

                Author and article information

                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                28 April 2020
                : 11
                : 532
                Department of Infectious Diseases and Microbiology, University of Lübeck , Lübeck, Germany
                Author notes

                Edited by: Martin Herrmann, University Hospital Erlangen, Germany

                Reviewed by: Payel Sil, National Institute of Environmental Health Sciences (NIEHS), United States; Mihaela Gadjeva, Harvard Medical School, United States

                *Correspondence: Tamás Laskay, tamas.laskay@ 123456uksh.de

                This article was submitted to Molecular Innate Immunity, a section of the journal Frontiers in Immunology

                Copyright © 2020 Ohms, Möller and Laskay.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                : 06 December 2019
                : 09 March 2020
                Page count
                Figures: 6, Tables: 2, Equations: 0, References: 62, Pages: 12, Words: 0
                Funded by: Bundesministerium für Bildung und Forschung 10.13039/501100002347
                Original Research

                neutrophils,tumor-associated neutrophils,n1,n2,polarization,neutrophil heterogeneity,leishmania donovani,visceral leishmaniasis


                Comment on this article