1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Kaurane and pimarane-type diterpenes from the Viguiera species inhibit vascular smooth muscle contractility.

      Life Sciences
      Animals, Asteraceae, chemistry, Brazil, Diterpenes, Abietane, pharmacology, Diterpenes, Kaurane, Humans, Muscle Contraction, drug effects, Muscle, Smooth, Vascular, Structure-Activity Relationship

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The research, development and use of natural products as therapeutic agents, especially those derived from plants, have been increasing in recent years. Despite the fact that plants provide a rich source of novel biologically active compounds, only a small percentage have been phytochemically investigated and studied for their medical potential. Viguiera is a genus that belongs to the family Asteraceae and to the sunflower tribe Heliantheae, which is widespread mostly in Mexico and in other areas of the Andes and upland areas of Brazil. A review on the secondary metabolites pointed out that sesquiterpene lactones and diterpenes, of the kaurane and pimarane-type, are the main compounds produced by these plants. Some reports have shown that kaurane- and pimarane-type diterpenes exert several biological activities such as anti-inflammatory action, antimicrobial and antispasmodic activities. Kaurenoic and pimaradienoic acids, which are the main secondary metabolites isolated by our research group from the roots of Viguiera robusta and V. arenaria, respectively, have been evaluated on vascular smooth muscle contractility. We showed that these diterpenoids are able to inhibit the vascular contractility mainly by blocking extracellular Ca(2+) influx. Additionally, in this review we discuss the structure-activity relationship of the diterpenes regarding their inhibitory activity on vascular contractility.

          Related collections

          Author and article information

          Comments

          Comment on this article