2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Satellite glia activation in dorsal root ganglion contributes to mechanical allodynia after selective motor fiber injury in adult rats

      , , , , , , ,
      Biomedicine & Pharmacotherapy
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Quantitative assessment of tactile allodynia in the rat paw

          We applied and validated a quantitative allodynia assessment technique, using a recently developed rat surgical neuropathy model wherein nocifensive behaviors are evoked by light touch to the paw. Employing von Frey hairs from 0.41 to 15.1 g, we first characterized the percent response at each stimulus intensity. A smooth log-linear relationship was observed, with a median 50% threshold at 1.97 g (95% confidence limits, 1.12-3.57 g). Subsequently, we applied a paradigm using stimulus oscillation around the response threshold, which allowed more rapid, efficient measurements. Median 50% threshold by this up-down method was 2.4 g (1.81-2.76). Correlation coefficient between the two methods was 0.91. In neuropathic rats, good intra- and inter-observer reproducibility was found for the up-down paradigm; some variability was seen in normal rats, attributable to extensive testing. Thresholds in a sizable group of neuropathic rats showed insignificant variability over 20 days. After 50 days, 61% still met strict neuropathy criteria, using survival analysis. Threshold measurement using the up-down paradigm, in combination with the neuropathic pain model, represents a powerful tool for analyzing the effects of manipulations of the neuropathic pain state.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microglia in Pain: Detrimental and Protective Roles in Pathogenesis and Resolution of Pain

            The previous decade has seen a rapid increase in microglial studies on pain, with a unique focus on microgliosis in the spinal cord after nerve injury and neuropathic pain. Numerous signaling molecules are altered in microglia and contribute to the pathogenesis of pain. Here we discuss how microglial signaling regulates spinal cord synaptic plasticity in acute and chronic pain conditions with different degrees and variations of microgliosis. We highlight that microglial mediators such as pro- and anti-inflammatory cytokines are powerful neuromodulators that regulate synaptic transmission and pain via neuron-glial interactions. We also reveal an emerging role of microglia in the resolution of pain, in part via specialized pro-resolving mediators including resolvins, protectins and maresins. We also discuss a possible role of microglia in chronic itch.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glia as architects of central nervous system formation and function

              Glia constitute roughly half of the cells of the central nervous system (CNS) but were long-considered to be static bystanders to its formation and function. Here we provide an overview of how the diverse and dynamic functions of glial cells orchestrate essentially all aspects of nervous system formation and function. Radial glia, astrocytes, oligodendrocyte progenitor cells, oligodendrocytes, and microglia each influence nervous system development, from neuronal birth, migration, axon specification, and growth through circuit assembly and synaptogenesis. As neural circuits mature, distinct glia fulfill key roles in synaptic communication, plasticity, homeostasis, and network-level activity through dynamic monitoring and alteration of CNS structure and function. Continued elucidation of glial cell biology, and the dynamic interactions of neurons and glia, will enrich our understanding of nervous system formation, health, and function.
                Bookmark

                Author and article information

                Journal
                Biomedicine & Pharmacotherapy
                Biomedicine & Pharmacotherapy
                Elsevier BV
                07533322
                July 2020
                July 2020
                : 127
                : 110187
                Article
                10.1016/j.biopha.2020.110187
                32361638
                36297c3e-bce5-4894-b665-6caa5caf29bc
                © 2020

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article