11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A monoclonal antibody (12G5) directed against CXCR-4 inhibits infection with the dual-tropic human immunodeficiency virus type 1 isolate HIV-1(89.6) but not the T-tropic isolate HIV-1(HxB).

      Journal of Biology
      Antibodies, Monoclonal, metabolism, Antigens, CD4, Cell Fusion, Cell Line, Cells, Cultured, HIV Core Protein p24, analysis, HIV Envelope Protein gp120, genetics, HIV-1, isolation & purification, HeLa Cells, Humans, Membrane Proteins, Microglia, cytology, virology, Peptide Fragments, Receptors, CXCR4, Receptors, HIV, T-Lymphocytes, Tumor Cells, Cultured

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We used a monoclonal antibody (12G5) directed against an extracellular domain of CXCR-4 to investigate the role of this receptor in infection of immortalized lymphoid cell lines, peripheral blood mononuclear cells (PBMCs), and primary brain microglia with a dual-tropic strain of human immunodeficiency virus (HIV-1(89.6)) and a T-tropic strain (HIV-1(IIIB)). Addition of antibody 12G5 to cells prior to and during infection with HIV-1(89.6) inhibited p24 production 100- to 10,000-fold in CEMx174 and 174-CD4 cells and about 10-fold in PBMC cultures but had no activity against infection of either monocyte-derived macrophages or brain microglia. In contrast, 12G5 had little or no effect on infection of CEMx174 cells with HIV-1(IIIB) or HIV-1(HxB). To identify the region of the HIV-1(89.6) envelope that confers sensitivity to 12G5, we used chimeric molecular clones. Chimeras containing the V3 loop region of HIV-1(89.6) were inhibited by 12G5 to the same degree as wild-type HIV-1(89.6) whereas replication of those viruses containing the V3 loop of HIV-1(HxB) was not inhibited by the antibody. A similar pattern was seen in infections of a U87 glioblastoma line that coexpresses CD4 and CXCR-4. Antibody 12G5 was also able to block fusion between HeLa-CD4 cells and CEMx174 cells chronically infected with HIV-1(89.6) but had no effect on fusion mediated by cells chronically infected with HIV-1(IIIB). Taken together, these results suggest that different strains of HIV-1 may interact with different sites on CXCR-4 or may have different binding affinities for the coreceptor.

          Related collections

          Author and article information

          Comments

          Comment on this article