31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serological evaluation for the current epidemic situation of foot and mouth disease among cattle and buffaloes in Egypt

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aim:

          The present study was aimed to investigate the epidemic situation of foot-and-mouth disease (FMD) in Egypt from 2016 to 2018 based on the detection of FMD virus (FMDV) in carrier or previously infected animals, by determination of antibodies against non-structural protein (NSP), implementation a pilot study on circulating FMDV serotypes and assure the efficacy of locally produced inactivated trivalent vaccine.

          Materials and Methods:

          A total of 1500 sera were collected from apparent healthy vaccinated cattle and buffaloes from three Egyptian geographical sectors, representing ten governorates. Determination of FMD antibodies against NSP was carried out using 3ABC enzyme-linked immunosorbent assay (ELISA) test. Serotyping of the circulating FMDV and assure the vaccine efficacy was performed using solid-phase competitive ELISA.

          Results:

          The 3ABC ELISA test revealed 26.4% and 23.7% positive for FMDV-NSP antibodies in cattle and buffalo sera, respectively. The highest positivity was in Delta Sector among both cattle 42.3% and buffaloes 28.8%. Serotyping of FMDV-positive NSP sera in El-Qalyubia Governorate for the circulating FMDV serotypes O, A, and Southern African Territories (SAT) 2 was 52.2%, 17.4%, and 30.4% in cattle and 31.8%, 27.3%, and 40.9% in buffaloes, respectively. The overall protection level due to the vaccination program was 62.1 and 60.9% in cattle and buffaloes, respectively, while the protective level of the FMDV serotypes O, A, and SAT2 included in the inactivated trivalent vaccine was 73.9, 84.6, and 63.8% in cattle and 72.3, 82.3, and 63.5% in buffaloes, respectively.

          Conclusion:

          The present study recommended full determination for the immunogenic relationship between the vaccine strains and the field strains to attain maximum protection against the circulating viruses.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Foot-and-mouth disease: past, present and future

          Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals including cattle, pigs, sheep and many wildlife species. It can cause enormous economic losses when incursions occur into countries which are normally disease free. In addition, it has long-term effects within countries where the disease is endemic due to reduced animal productivity and the restrictions on international trade in animal products. The disease is caused by infection with foot-and-mouth disease virus (FMDV), a picornavirus. Seven different serotypes (and numerous variants) of FMDV have been identified. Some serotypes have a restricted geographical distribution, e.g. Asia-1, whereas others, notably serotype O, occur in many different regions. There is no cross-protection between serotypes and sometimes protection conferred by vaccines even of the same serotype can be limited. Thus it is important to characterize the viruses that are circulating if vaccination is being used for disease control. This review describes current methods for the detection and characterization of FMDVs. Sequence information is increasingly being used for identifying the source of outbreaks. In addition such information can be used to understand antigenic change within virus strains. The challenges and opportunities for improving the control of the disease within endemic settings, with a focus on Eurasia, are discussed, including the role of the FAO/EuFMD/OIE Progressive Control Pathway. Better control of the disease in endemic areas reduces the risk of incursions into disease-free regions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vaccination against foot-and-mouth disease virus: strategies and effectiveness.

            Although present conventional foot-and-mouth disease (FMD) vaccines can prevent clinical disease, protection is short lived ( approximately 6 months), often requiring frequent revaccination for prophylactic control, and vaccination does not induce rapid protection against challenge or prevent the development of the carrier state. Furthermore, it is clear that the clinical protection depends upon the length of immunization and the duration of exposure/challenge methods. This review summarizes the present and future strategies for FMD control in endemic and FMD-free countries, the effectiveness of FMD vaccines in cattle, sheep and pigs, new methods for selecting vaccine strains, suggestions for alternative methods of vaccine testing, suggestions for the development of new-generation efficacious vaccines and their companion tests to differentiate infection in vaccinated animals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Foot and mouth disease virus vaccines.

              Foot and mouth disease (FMD) is a highly infectious and economically devastating disease of livestock. Although vaccines, available since the early 1900s, have been instrumental in eradicating FMD from parts of the world, the disease still affects millions of animals around the globe and remains the main sanitary barrier to the commerce of animals and animal products. Currently available inactivated antigen vaccines applied intramuscularly to individual animals, confer serotype and subtype specific protection in 1-2 weeks but fail to induce long-term protective immunity. Among the limitations of this vaccine are potential virus escape from the production facility, short shelf life of formulated product, short duration of immunity and requirement of dozens of antigens to address viral antigenic diversity. Here we review novel vaccine approaches that address some of these limitations. Basic research and the combination of reliable animal inoculation models, reverse genetics and computational biology tools will allow the rational design of safe and effective FMD vaccines. These vaccines should address not only the needs of FMD-free countries but also allow the progressive global control and eradication of this devastating disease.
                Bookmark

                Author and article information

                Journal
                Vet World
                Vet World
                Veterinary World
                Veterinary World (India )
                0972-8988
                2231-0916
                January 2020
                03 January 2020
                : 13
                : 1
                : 1-9
                Affiliations
                [1 ]Department of Preventive Medicine, General Organization for Veterinary Services, Dokki, Giza, Egypt
                [2 ]Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
                [3 ]Department of Virology, Animal Health Research Institute, Dokki, Giza, Egypt
                Author notes
                Corresponding author: Mariam M. Abd El-Rhman, e-mail: mariammagdy_85@ 123456yahoo.com Co-authors: DGA: dieaabo@ 123456gmail.com , WSA: awadwsaa@ 123456gmail.com , SAHS: sayedsalem60@ 123456yahoo.com
                Article
                Vetworld-13-1
                10.14202/vetworld.2020.1-9
                7020118
                32158144
                363d33f6-4d7c-4de6-ab9b-63f5cc92de9e
                Copyright: © Abd El-Rhman, et al

                Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 08 September 2019
                : 25 November 2019
                Categories
                Research Article

                3abc enzyme-linked immunosorbent assay test,egypt,foot-and-mouth disease virus,non-structural protein,solid-phase competitive enzyme-linked immunosorbent assay

                Comments

                Comment on this article