7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Metal artifacts in computed tomography for radiation therapy planning: dosimetric effects and impact of metal artifact reduction

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A significant and increasing number of patients receiving radiation therapy present with metal objects close to, or even within, the treatment area, resulting in artifacts in computed tomography (CT) imaging, which is the most commonly used imaging method for treatment planning in radiation therapy. In the presence of metal implants, such as dental fillings in treatment of head-and-neck tumors, spinal stabilization implants in spinal or paraspinal treatment or hip replacements in prostate cancer treatments, the extreme photon absorption by the metal object leads to prominent image artifacts. Although current CT scanners include a series of correction steps for beam hardening, scattered radiation and noisy measurements, when metal implants exist within or close to the treatment area, these corrections do not suffice. CT metal artifacts affect negatively the treatment planning of radiation therapy either by causing difficulties to delineate the target volume or by reducing the dose calculation accuracy. Various metal artifact reduction (MAR) methods have been explored in terms of improvement of organ delineation and dose calculation in radiation therapy treatment planning, depending on the type of radiation treatment and location of the metal implant and treatment site. Including a brief description of the available CT MAR methods that have been applied in radiation therapy, this article attempts to provide a comprehensive review on the dosimetric effect of the presence of CT metal artifacts in treatment planning, as reported in the literature, and the potential improvement suggested by different MAR approaches. The impact of artifacts on the treatment planning and delivery accuracy is discussed in the context of different modalities, such as photon external beam, brachytherapy and particle therapy, as well as by type and location of metal implants.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          A technique for the quantitative evaluation of dose distributions.

          The commissioning of a three-dimensional treatment planning system requires comparisons of measured and calculated dose distributions. Techniques have been developed to facilitate quantitative comparisons, including superimposed isodoses, dose-difference, and distance-to-agreement (DTA) distributions. The criterion for acceptable calculation performance is generally defined as a tolerance of the dose and DTA in regions of low and high dose gradients, respectively. The dose difference and DTA distributions complement each other in their useful regions. A composite distribution has recently been developed that presents the dose difference in regions that fail both dose-difference and DTA comparison criteria. Although the composite distribution identifies locations where the calculation fails the preselected criteria, no numerical quality measure is provided for display or analysis. A technique is developed to unify dose distribution comparisons using the acceptance criteria. The measure of acceptability is the multidimensional distance between the measurement and calculation points in both the dose and the physical distance, scaled as a fraction of the acceptance criteria. In a space composed of dose and spatial coordinates, the acceptance criteria form an ellipsoid surface, the major axis scales of which are determined by individual acceptance criteria and the center of which is located at the measurement point in question. When the calculated dose distribution surface passes through the ellipsoid, the calculation passes the acceptance test for the measurement point. The minimum radial distance between the measurement point and the calculation points (expressed as a surface in the dose-distance space) is termed the gamma index. Regions where gamma > 1 correspond to locations where the calculation does not meet the acceptance criteria. The determination of gamma throughout the measured dose distribution provides a presentation that quantitatively indicates the calculation accuracy. Examples of a 6 MV beam penumbra are used to illustrate the gamma index.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Artifacts in CT: recognition and avoidance.

            Artifacts can seriously degrade the quality of computed tomographic (CT) images, sometimes to the point of making them diagnostically unusable. To optimize image quality, it is necessary to understand why artifacts occur and how they can be prevented or suppressed. CT artifacts originate from a range of sources. Physics-based artifacts result from the physical processes involved in the acquisition of CT data. Patient-based artifacts are caused by such factors as patient movement or the presence of metallic materials in or on the patient. Scanner-based artifacts result from imperfections in scanner function. Helical and multisection technique artifacts are produced by the image reconstruction process. Design features incorporated into modern CT scanners minimize some types of artifacts, and some can be partially corrected by the scanner software. However, in many instances, careful patient positioning and optimum selection of scanning parameters are the most important factors in avoiding CT artifacts. (c) RSNA, 2004.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43

                Bookmark

                Author and article information

                Journal
                Physics in Medicine and Biology
                Phys. Med. Biol.
                IOP Publishing
                0031-9155
                1361-6560
                April 21 2017
                April 21 2017
                March 21 2017
                : 62
                : 8
                : R49-R80
                Article
                10.1088/1361-6560/aa5293
                28323641
                363fbb9d-84f4-4aec-9035-6c078ea6e107
                © 2017

                http://iopscience.iop.org/info/page/text-and-data-mining

                http://iopscience.iop.org/page/copyright

                History

                Comments

                Comment on this article