63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Aristolochia Manshuriensis Kom Inhibits Adipocyte Differentiation by Regulation of ERK1/2 and Akt Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aristolochia manshuriensis Kom (AMK) is a traditional medicinal herb used for the treatment of arthritis, rheumatism, hepatitis, and anti-obesity. Because of nephrotoxicity and carcinogenicity of AMK, there are no pharmacological reports on anti-obesity potential of AMK. Here, we showed AMK has an inhibitory effect on adipocyte differentiation of 3T3-L1 cells along with significantly decrease in the lipid accumulation by downregulating several adipocyte-specific transcription factors including peroxisome proliferation-activity receptor γ (PPAR-γ), CCAAT/enhancer binding protein α (C/EBP-α) and C/EBP-β, which are critical for adipogenesis in vitro. AMK also markedly activated the extracellular signal-regulated protein kinase 1/2 (ERK1/2) pathway including Ras, Raf1, and mitogen-activated protein kinase kinase 1 (MEK1), and significantly suppressed Akt pathway by inhibition of phosphoinositide-dependent kinase 1 (PDK1). Aristolochic acid (AA) and ethyl acetate (EtOAc) fraction of AMK with AA were significantly inhibited TG accumulation, and regulated two pathway (ERK1/2 and Akt) during adipocyte differentiation, and was not due to its cytotoxicity. These two pathways were upstream of PPAR-γ and C/EBPα in the adipogenesis. In addition, gene expressions of secreting factors such as fatty acid synthase (FAS), adiponectin, lipopreotein lipase (LPL), and aP2 were significantly inhibited by treatment of AMK during adipogenesis. We used the high-fat diet (HFD)-induced obesity mouse model to determine the inhibitory effects of AMK on obesity. Oral administration of AMK (62.5 mg/kg/day) significantly decreased the fat tissue weight, total cholesterol (TC), and low density lipoprotein-cholesterol (LDL-C) concentration in the blood. The results of this study suggested that AMK inhibited lipid accumulation by the down-regulation of the major transcription factors of the adipogensis pathway including PPAR-γ and C/EBP-α through regulation of Akt pathway and ERK 1/2 pathway in 3T3-L1 adipocytes and HFD-induced obesity mice, and AA may be main act in inhibitory effects of AMK during adipocyte differentiation.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2.

          To elucidate the functions of the serine/threonine kinase Akt/PKB in vivo, we generated mice lacking both akt1 and akt2 genes. Akt1/Akt2 double-knockout (DKO) mice exhibit severe growth deficiency and die shortly after birth. These mice display impaired skin development because of a proliferation defect, severe skeletal muscle atrophy because of a marked decrease in individual muscle cell size, and impaired bone development. These defects are strikingly similar to the phenotypes of IGF-1 receptor-deficient mice and suggest that Akt may serve as the most critical downstream effector of the IGF-1 receptor during development. In addition, Akt1/Akt2 DKO mice display impeded adipogenesis. Specifically, Akt1 and Akt2 are required for the induced expression of PPARgamma, the master regulator of adipogenesis, establishing a new essential role for Akt in adipocyte differentiation. Overall, the combined deletion of Akt1 and Akt2 establishes in vivo roles for Akt in cell proliferation, growth, and differentiation. These functions of Akt were uncovered despite the observed lower level of Akt activity mediated by Akt3 in Akt1/Akt2 DKO cells, suggesting that a critical threshold level of Akt activity is required to maintain normal cell proliferation, growth, and differentiation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mitotic clonal expansion: a synchronous process required for adipogenesis.

            When induced to differentiate, growth-arrested 3T3-L1 preadipocytes synchronously reenter the cell cycle and undergo mitotic clonal expansion (MCE) followed by expression of genes that produce the adipocyte phenotype. The preadipocytes traverse the G(1)S checkpoint synchronously as evidenced by the expressionactivation of cdk2-cyclin-EA, turnover of p27kip1, hyperphosphorylation of Rb, translocation of cyclin D(1) from nuclei to cytoplasm and GSK-3beta from cytoplasm to nuclei, and incorporation of [(3)H]thymidine into DNA. As the cells cross the G(1)S checkpoint, CEBPbeta acquires DNA-binding activity, initiating a cascade of transcriptional activation that culminates in the expression of adipocyte proteins. The mitogen-activated protein kinaseextracellular signal-regulated kinase kinase (MEK) inhibitor PD98059 delays, but does not block, MCE and differentiation, the extent of the delay causing a comparable delay in the expression of cell-cycle markers, MCE, and adipogenesis. The more potent and specific MEK inhibitor UO126 and the cyclin-dependent kinase inhibitor roscovitine, which inhibit the cell cycle at different points, block MCE, expression of cell cycle and adipocyte markers, as well as adipogenesis. These results show that MCE is a prerequisite for differentiation of 3T3-L1 preadipocytes into adipocytes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation.

              Akt is a serine/threonine kinase that requires a functional phosphatidylinositol 3-kinase to be stimulated by insulin and other growth factors. When directed to membranes by the addition of a src myristoylation sequence, Akt becomes constitutively active. In the present studies, the constitutively active Akt and a nonmyristoylated control mutant were expressed in 3T3-L1 cells that can be induced to differentiate into adipocytes. The constitutively active Akt induced glucose uptake into adipocytes in the absence of insulin by stimulating translocation of the insulin-responsive glucose transporter 4 to the plasma membrane. The constitutively active Akt also increased the synthesis of the ubiquitously expressed glucose transporter 1. The increased glucose influx in the 3T3-L1 adipocytes directed lipid but not glycogen synthesis. These results indicate that Akt can regulate glucose uptake and metabolism.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                14 November 2012
                : 7
                : 11
                : e49530
                Affiliations
                [1]Traditional Korean Medicines (TKM)-Based Herbal Drug Research, Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
                University of Cincinnati, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DHK TK JYM. Performed the experiments: DHK JHL HSA. Analyzed the data: DHK TK WKC. Contributed reagents/materials/analysis tools: DHK YHH. Wrote the paper: DHK JYM. Edited the paper: HH TK WKC.

                Article
                PONE-D-12-14536
                10.1371/journal.pone.0049530
                3498119
                23166699
                363fcb14-1bd5-4cb0-826d-e6c2b4146606
                Copyright @ 2012

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 May 2012
                : 9 October 2012
                Page count
                Pages: 12
                Funding
                This work has been supported by the grant K12050 awarded to the Korea Institute of Oriental Medicine (KIOM) from the Ministry of Education, Science and Technology (MEST), Korea. The funders had no role in study design, data collection and anaysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Biotechnology
                Biomaterials
                Drug Discovery
                Developmental Biology
                Stem Cells
                Mesenchymal Stem Cells
                Cell Differentiation
                Molecular Development
                Pattern Formation
                Model Organisms
                Animal Models
                Mouse
                Materials Science
                Natural Materials
                Medicine
                Clinical Research Design
                Nutrition
                Obesity

                Uncategorized
                Uncategorized

                Comments

                Comment on this article