64
views
0
recommends
+1 Recommend
1 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overview of nanocellulose as additives in paper processing and paper products

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The rapid economic growth and environmental concerns have led to high demands on paper and paper-based products in terms of variety, quantity, quality, and specialty. Enhancement and functionalization with additives are constantly required. Moving away from traditional petroleum-based additives, researchers have attempted to use “green” nanoadditives by introducing renewable environmentally friendly nanocellulose. This article studies the functions of nanocellulose as bio-additives (enhancer, retention and filtration reagent, and coating aid) in paper and paper products, and overviews the research development of nanocellulose-based additives and their applications in the paper industry for both efficient production and paper functionalization. The review shows that (1) a variety of nanocellulose-based bioadditives have been reported for various applications in paper and paper-based products, while commercially viable developments are to be advanced; (2) nanocellulose was mostly formulated with other polymer and particles as additives to achieve their synergistic effects; (3) major interests have concentrated on the nanocellulose in the specialty papers as representing more value added products and in the efficient utilization of recycled fibers, which remains most attractive and promising for future development. This report shall provide most useful database information for researchers and industries for paper recycling and enhancement, and paper-based products innovation and application.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: not found
          • Article: not found

          Microfibrillated cellulose and new nanocomposite materials: a review

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field.

            There are numerous examples where animals or plants synthesize extracellular high-performance skeletal biocomposites consisting of a matrix reinforced by fibrous biopolymers. Cellulose, the world's most abundant natural, renewable, biodegradable polymer, is a classical example of these reinforcing elements, which occur as whisker-like microfibrils that are biosynthesized and deposited in a continuous fashion. In many cases, this mode of biogenesis leads to crystalline microfibrils that are almost defect-free, with the consequence of axial physical properties approaching those of perfect crystals. This quite "primitive" polymer can be used to create high performance nanocomposites presenting outstanding properties. This reinforcing capability results from the intrinsic chemical nature of cellulose and from its hierarchical structure. Aqueous suspensions of cellulose crystallites can be prepared by acid hydrolysis of cellulose. The object of this treatment is to dissolve away regions of low lateral order so that the water-insoluble, highly crystalline residue may be converted into a stable suspension by subsequent vigorous mechanical shearing action. During the past decade, many works have been devoted to mimic biocomposites by blending cellulose whiskers from different sources with polymer matrixes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microfibrillated cellulose - its barrier properties and applications in cellulosic materials: a review.

              Interest in microfibrillated cellulose (MFC) has been increasing exponentially. During the last decade, this bio-based nanomaterial was essentially used in nanocomposites for its reinforcement property. Its nano-scale dimensions and its ability to form a strong entangled nanoporous network, however, have encouraged the emergence of new high-value applications. In previous years, its mode of production has completely changed, as many forms of optimization have been developed. New sources, new mechanical processes, and new pre- and post-treatments are currently under development to reduce the high energy consumption and produce new types of MFC materials on an industrial scale. The nanoscale characterization possibilities of different MFC materials are thus increasing intensively. Therefore, it is critical to review such MFC materials and their properties. Moreover, very recent studies have proved the significant barrier properties of MFC. Hence, it is proposed to focus on the barrier properties of MFC used in films, in nanocomposites, or in paper coating. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Nanotechnology Reviews
                Walter de Gruyter GmbH
                2191-9097
                November 12 2021
                November 12 2021
                January 01 2021
                May 03 2021
                May 03 2021
                January 01 2021
                : 10
                : 1
                : 264-281
                Affiliations
                [1 ]College of Materials Engineering, Fujian Agriculture and Forestry University , Fuzhou 350108 , China
                [2 ]Nanocellulose and Biocomposites Research Centre, Brunel University , London , UB8 3PH , United Kingdom
                Article
                10.1515/ntrev-2021-0023
                364315ae-a165-41f9-8b01-2be00ccb5305
                © 2021

                http://creativecommons.org/licenses/by/4.0


                Comments

                Comment on this article