66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Common mycorrhizal networks (CMNs) link multiple plants together. We hypothesized that CMNs can serve as an underground conduit for transferring herbivore-induced defence signals. We established CMN between two tomato plants in pots with mycorrhizal fungus Funneliformis mosseae, challenged a ‘donor' plant with caterpillar Spodoptera litura, and investigated defence responses and insect resistance in neighbouring CMN-connected ‘receiver' plants. After CMN establishment caterpillar infestation on ‘donor' plant led to increased insect resistance and activities of putative defensive enzymes, induction of defence-related genes and activation of jasmonate (JA) pathway in the ‘receiver' plant. However, use of a JA biosynthesis defective mutant spr2 as ‘donor' plants resulted in no induction of defence responses and no change in insect resistance in ‘receiver' plants, suggesting that JA signalling is required for CMN-mediated interplant communication. These results indicate that plants are able to hijack CMNs for herbivore-induced defence signal transfer and interplant defence communication.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Plant defense against herbivores: chemical aspects.

          Plants have evolved a plethora of different chemical defenses covering nearly all classes of (secondary) metabolites that represent a major barrier to herbivory: Some are constitutive; others are induced after attack. Many compounds act directly on the herbivore, whereas others act indirectly via the attraction of organisms from other trophic levels that, in turn, protect the plant. An enormous diversity of plant (bio)chemicals are toxic, repellent, or antinutritive for herbivores of all types. Examples include cyanogenic glycosides, glucosinolates, alkaloids, and terpenoids; others are macromolecules and comprise latex or proteinase inhibitors. Their modes of action include membrane disruption, inhibition of nutrient and ion transport, inhibition of signal transduction processes, inhibition of metabolism, or disruption of the hormonal control of physiological processes. Recognizing the herbivore challenge and precise timing of plant activities as well as the adaptive modulation of the plants' metabolism is important so that metabolites and energy may be efficiently allocated to defensive activities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recruitment of entomopathogenic nematodes by insect-damaged maize roots.

            Plants under attack by arthropod herbivores often emit volatile compounds from their leaves that attract natural enemies of the herbivores. Here we report the first identification of an insect-induced belowground plant signal, (E)-beta-caryophyllene, which strongly attracts an entomopathogenic nematode. Maize roots release this sesquiterpene in response to feeding by larvae of the beetle Diabrotica virgifera virgifera, a maize pest that is currently invading Europe. Most North American maize lines do not release (E)-beta-caryophyllene, whereas European lines and the wild maize ancestor, teosinte, readily do so in response to D. v. virgifera attack. This difference was consistent with striking differences in the attractiveness of representative lines in the laboratory. Field experiments showed a fivefold higher nematode infection rate of D. v. virgifera larvae on a maize variety that produces the signal than on a variety that does not, whereas spiking the soil near the latter variety with authentic (E)-beta-caryophyllene decreased the emergence of adult D. v. virgifera to less than half. North American maize lines must have lost the signal during the breeding process. Development of new varieties that release the attractant in adequate amounts should help enhance the efficacy of nematodes as biological control agents against root pests like D. v. virgifera.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Volatile signaling in plant-plant interactions: "talking trees" in the genomics era.

              Plants may "eavesdrop" on volatile organic compounds (VOCs) released by herbivore-attacked neighbors to activate defenses before being attacked themselves. Transcriptome and signal cascade analyses of VOC-exposed plants suggest that plants eavesdrop to prime direct and indirect defenses and to hone competitive abilities. Advances in research on VOC biosynthesis and perception have facilitated the production of plants that are genetically "deaf" to particular VOCs or "mute" in elements of their volatile vocabulary. Such plants, together with advances in VOC analytical instrumentation, will allow researchers to determine whether fluency enhances the fitness of plants in natural communities.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                28 January 2014
                2014
                : 4
                : 3915
                Affiliations
                [1 ]State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources
                [2 ]Key Laboratory of Tropical Agro-environment, Ministry of Agriculture, South China Agricultural University , Guangzhou 510642, China
                [3 ]Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences , Beijing 100101, China
                [4 ]Ministry of Agriculture Key Laboratory of Crop Nutrition and Fertilization, Institute of Agricultural Resources and Regional Planning , Chinese Academy of Agricultural Sciences, Beijing 100081, China
                [5 ]School of Plant Biology, University of Western Australia , Crawley, WA 6009, Australia
                [6 ]Department of Entomology, Texas A&M University , College Station, Texas 77843, USA
                Author notes
                Article
                srep03915
                10.1038/srep03915
                3904153
                24468912
                364a406a-44d9-4c5d-b8aa-3177b2053a24
                Copyright © 2014, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 18 November 2013
                : 13 January 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article