41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Activation of GPR4 by Acidosis Increases Endothelial Cell Adhesion through the cAMP/Epac Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endothelium-leukocyte interaction is critical for inflammatory responses. Whereas the tissue microenvironments are often acidic at inflammatory sites, the mechanisms by which cells respond to acidosis are not well understood. Using molecular, cellular and biochemical approaches, we demonstrate that activation of GPR4, a proton-sensing G protein-coupled receptor, by isocapnic acidosis increases the adhesiveness of human umbilical vein endothelial cells (HUVECs) that express GPR4 endogenously. Acidosis in combination with GPR4 overexpression further augments HUVEC adhesion with U937 monocytes. In contrast, overexpression of a G protein signaling-defective DRY motif mutant (R115A) of GPR4 does not elicit any increase of HUVEC adhesion, indicating the requirement of G protein signaling. Downregulation of GPR4 expression by RNA interference reduces the acidosis-induced HUVEC adhesion. To delineate downstream pathways, we show that inhibition of adenylate cyclase by inhibitors, 2′,5′-dideoxyadenosine (DDA) or SQ 22536, attenuates acidosis/GPR4-induced HUVEC adhesion. Consistently, treatment with a cAMP analog or a G i signaling inhibitor increases HUVEC adhesiveness, suggesting a role of the G s/cAMP signaling in this process. We further show that the cAMP downstream effector Epac is important for acidosis/GPR4-induced cell adhesion. Moreover, activation of GPR4 by acidosis increases the expression of vascular adhesion molecules E-selectin, VCAM-1 and ICAM-1, which are functionally involved in acidosis/GPR4-mediated HUVEC adhesion. Similarly, hypercapnic acidosis can also activate GPR4 to stimulate HUVEC adhesion molecule expression and adhesiveness. These results suggest that acidosis/GPR4 signaling regulates endothelial cell adhesion mainly through the G s/cAMP/Epac pathway and may play a role in the inflammatory response of vascular endothelial cells.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          The effects of extracellular pH on immune function.

          A Lardner (2001)
          The effect of alterations in extracellular pH on cellular and humoral immune function is reviewed. Because acidic pH predominates at inflammatory loci and other sites of immune activity, most studies to date focus on the effect of acidic rather than alkaline pH. Investigations on polymorphonuclear leukocytes demonstrate mainly inhibition of chemotaxis, respiratory activity, and bactericidal capacity at reduced pH. Evidence of impaired lymphocyte cytotoxicity and proliferation at acidic pH is also beginning to emerge. Many of the clinical acidoses are accompanied similarly by immunodeficiency. Studies on macrophages and eosinophils are few and inconclusive. A small number of studies demonstrate acid-induced activation of complement proteins and the alternative complement pathway, plus increased antibody-binding to leukocytes at lowered pH. A differential effect of acidic pH on humoral and cellular immunity may, therefore, exist. Increasing recognition of the significance of extracellular pH in relation to immune function warrants further studies in this presently incomplete but rewarding field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proton-sensing G-protein-coupled receptors.

            Blood pH is maintained in a narrow range around pH 7.4 mainly through regulation of respiration and renal acid extrusion. The molecular mechanisms involved in pH homeostasis are not completely understood. Here we show that ovarian cancer G-protein-coupled receptor 1 (OGR1), previously described as a receptor for sphingosylphosphorylcholine, acts as a proton-sensing receptor stimulating inositol phosphate formation. The receptor is inactive at pH 7.8, and fully activated at pH 6.8-site-directed mutagenesis shows that histidines at the extracellular surface are involved in pH sensing. We find that GPR4, a close relative of OGR1, also responds to pH changes, but elicits cyclic AMP formation. It is known that the skeleton participates in pH homeostasis as a buffering organ, and that osteoblasts respond to pH changes in the physiological range, but the pH-sensing mechanism operating in these cells was hitherto not known. We detect expression of OGR1 in osteosarcoma cells and primary human osteoblast precursors, and show that these cells exhibit strong pH-dependent inositol phosphate formation. Immunohistochemistry on rat tissue sections confirms the presence of OGR1 in osteoblasts and osteocytes. We propose that OGR1 and GPR4 are proton-sensing receptors involved in pH homeostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Leukocyte-endothelial-cell interactions in leukocyte transmigration and the inflammatory response.

              Both the innate and adaptive immune responses are dependent on the migration of leukocytes across endothelial cells. The process of diapedesis, in which the leukocyte crawls between tightly apposed endothelial cells, is a unique and complex process. Several molecules concentrated at the junctions of endothelial cells, originally described as having a role in holding the endothelial monolayer together, have also been shown to have a role in the emigration of leukocytes. Several mechanisms have been proposed for 'loosening' the junctions between endothelial cells to enable leukocyte passage. These leukocyte-endothelial-cell adhesion molecules are probably involved in regulating the signaling as well as the adhesion events of diapedesis. In addition, this Review introduces a new and unified nomenclature for the junctional adhesion molecule (JAM) family.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                16 November 2011
                : 6
                : 11
                : e27586
                Affiliations
                [1 ]Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
                [2 ]Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, United States of America
                [3 ]UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, United States of America
                [4 ]Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
                Universidade de Sao Paulo, Brazil
                Author notes

                Performed the experiments: AC LD NRL LVY. Analyzed the data: AC LD NRL LVY. Contributed reagents/materials/analysis tools: ONW LVY. Wrote the paper: LVY LD. Conceived the experiments: LVY. Designed the experiments: AC LD ASA ONW LVY.

                Article
                PONE-D-11-06649
                10.1371/journal.pone.0027586
                3217975
                22110680
                3659f64b-43a9-4fa2-b09c-662a0fa59cd9
                Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 13 April 2011
                : 20 October 2011
                Page count
                Pages: 14
                Categories
                Research Article
                Biology
                Genetics
                Gene Expression
                Gene Function
                Immunology
                Immune Response
                Immunomodulation
                Molecular Cell Biology
                Signal Transduction
                Signaling in Cellular Processes
                G-Protein Signaling
                Cell Adhesion

                Uncategorized
                Uncategorized

                Comments

                Comment on this article