6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      STRING data mining of GWAS data in canine hereditary pigment-associated deafness

      research-article
      , *
      Veterinary and Animal Science
      Elsevier
      STRING, Deafness, GWAS, Australian cattle dog, Dalmatian, English setter

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlights

          • Genome-wide association studies may fail to identify significant associations between a disorder and causative genes in complex hereditary disorders.

          • STRING software is a bioinformatics data mining tool that identifies known and predicted physical and functional relationship networks among the proteins of candidate genes.

          • STRING analysis provides a mechanism to identify gene-gene interactions that might not otherwise have been recognized.

          • Relationships identified from STRING analysis can uncover function-based gene-gene relationships that may not be easily extracted from literature, thereby providing genes for pursuit as a cause of a complex hereditary disorder.

          • In this study STRING analysis was applied to identification of candidate genes to pursue as the cause of pigment-associated hereditary deafness in dogs.

          Abstract

          Most canine deafness is linked to white pigmentation caused by the piebald locus, shown to be the gene MITF ( melanocyte inducing transcription factor), but studies have failed to identify a deafness cause. The coding regions of MITF have not been shown to be mutated in deaf dogs, leading us to pursue genes acting on or controlled by MITF. We have genotyped DNA from 502 deaf and hearing Australian cattle dogs, Dalmatians, and English setters, breeds with a high deafness prevalence. Genome-wide significance was not attained in any of our analyses, but we did identify several suggestive associations. Genome-wide association studies (GWAS) in complex hereditary disorders frequently fail to identify causative gene variants, so advanced bioinformatics data mining techniques are needed to extract information to guide future studies.

          STRING diagrams are graphical representations of known and predicted networks of protein-protein interactions, identifying documented relationships between gene proteins based on the scientific literature, to identify functional gene groupings to pursue for further scrutiny. The STRING program predicts associations at a preset confidence level and suggests biological functions based on the identified genes.

          Starting with (1) genes within 500 kb of GWAS-suggested SNPs, (2) known pigmentation genes, (3) known human deafness genes, and (4) genes identified from proteomic analysis of the cochlea, we generated STRING diagrams that included these genes. We then reduced the number of genes by excluding genes with no relationship to auditory function, pigmentation, or relevant structures, and identified clusters of genes that warrant further investigation.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Global Analysis of Protein Expression of Inner Ear Hair Cells.

          The mammalian inner ear (IE) subserves auditory and vestibular sensations via highly specialized cells and proteins. Sensory receptor hair cells (HCs) are necessary for transducing mechanical inputs and stimulating sensory neurons by using a host of known and as yet unknown protein machinery. To understand the protein composition of these unique postmitotic cells, in which irreversible protein degradation or damage can lead to impaired hearing and balance, we analyzed IE samples by tandem mass spectrometry to generate an unbiased, shotgun-proteomics view of protein identities and abundances. By using Pou4f3/eGFP-transgenic mice in which HCs express GFP driven by Pou4f3, we FACS purified a population of HCs to analyze and compare the HC proteome with other IE subproteomes from sensory epithelia and whole IE. We show that the mammalian HC proteome comprises hundreds of uniquely or highly expressed proteins. Our global proteomic analysis of purified HCs extends the existing HC transcriptome, revealing previously undetected gene products and isoform-specific protein expression. Comparison of our proteomic data with mouse and human databases of genetic auditory/vestibular impairments confirms the critical role of the HC proteome for normal IE function, providing a cell-specific pool of candidates for novel, important HC genes. Several proteins identified exclusively in HCs by proteomics and verified by immunohistochemistry map to human genetic deafness loci, potentially representing new deafness genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A de novo silencer causes elimination of MITF-M expression and profound hearing loss in pigs

            Background Genesis of novel gene regulatory modules is largely responsible for morphological and functional evolution. De novo generation of novel cis-regulatory elements (CREs) is much rarer than genomic events that alter existing CREs such as transposition, promoter switching or co-option. Only one case of de novo generation has been reported to date, in fish and without involvement of phenotype alteration. Yet, this event likely occurs in other animals and helps drive genetic/phenotypic variation. Results Using a porcine model of spontaneous hearing loss not previously characterized we performed gene mapping and mutation screening to determine the genetic foundation of the phenotype. We identified a mutation in the non-regulatory region of the melanocyte-specific promoter of microphthalmia-associated transcription factor (MITF) gene that generated a novel silencer. The consequent elimination of expression of the MITF-M isoform led to early degeneration of the intermediate cells of the cochlear stria vascularis and profound hearing loss, as well as depigmentation, all of which resemble the typical phenotype of Waardenburg syndrome in humans. The mutation exclusively affected MITF-M and no other isoforms. The essential function of Mitf-m in hearing development was further validated using a knock-out mouse model. Conclusions Elimination of the MITF-M isoform alone is sufficient to cause deafness and depigmentation. To our knowledge, this study provides the first evidence of a de novo CRE in mammals that produces a systemic functional effect. Electronic supplementary material The online version of this article (doi:10.1186/s12915-016-0273-2) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microphthalmia-associated transcription factor in the Wnt signaling pathway.

              Microphthalmia-associated transcription factor (MITF) contains a basic helix-loop-helix and leucine-zipper (bHLH-LZ) structure and consists of many isoforms with different N-termini. Melanocyte-specific MITF isoform (MITF-M) is of particular interest, because a heterozygous mutation in the MITF gene is associated with Waardenburg syndrome type 2 (WS2) that is characterized by deafness and hypopigmentation because of lack of melanocytes in the inner ear and skin. Expression of MITF-M is under the regulation of the melanocyte-specific promoter (M promoter) of the MITF gene, and transcription from the M promoter is induced by Wnt signals through a nuclear mediator, lymphoid-enhancing factor 1 (LEF-1). In addition, functional cooperation of MITF-M with LEF-1 could lead to transcriptional activation of the M promoter and the dopachrome tautomerase (DCT) gene, an early melanoblast marker. The bHLH-LZ region of MITF-M is responsible for the physical interaction with LEF-1, and beta-catenin is required for the collaboration between LEF-1 and MITF-M. Importantly, MITF-M could function as a non-DNA-binding co-factor for LEF-1. These results suggest that MITF-M may function as a self-regulator of its own expression to maintain a threshold level of MITF-M at a certain sensitive stage of melanocyte development, which could account for the dominant inheritance of WS2. MITF-M therefore plays dual roles in the Wnt signaling pathway; MITF-M represents a downstream target and a nuclear mediator of Wnt signals in melanocytes.
                Bookmark

                Author and article information

                Contributors
                Journal
                Vet Anim Sci
                Vet Anim Sci
                Veterinary and Animal Science
                Elsevier
                2451-943X
                12 May 2020
                June 2020
                12 May 2020
                : 9
                : 100118
                Affiliations
                [0001]Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803 USA
                Author notes
                [* ]Corresponding author. strain@ 123456lsu.edu
                Article
                S2451-943X(20)30031-4 100118
                10.1016/j.vas.2020.100118
                7386748
                36653bd0-8d5a-471c-a33e-d5607a16b88b
                © 2020 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 24 February 2020
                : 6 May 2020
                Categories
                Article

                string,deafness,gwas,australian cattle dog,dalmatian,english setter

                Comments

                Comment on this article