34
views
0
recommends
+1 Recommend
1 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Analysis of differential expression of genes induced by ethephon in elongating internodes of maize plants

      research-article

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plant growth regulators (PGRs) are commonly used in cereal cropping systems to restrict plant height and control lodging. Ethephon has been reported to shorten internodes and increase grain yield of maize. To analyze the transcriptomic profiles of maize internode elongation following ethephon treatment, differentially expressed genes were compared between the treatment and control samples of inbred line Zong 31 using the Affymetrix Maize Genome Array. According to the microarray data, 326 probe sets showed significant change in expression. Further research revealed that the most remarkable effects of ethephon on maize internodes elongation occurred during a 48 h period, when 89 differentially expressed genes were detected. There were dramatic change in transcript levels at 24 h and six Auxin transport genes and four gibberellin biosynthesis pathway genes were differentially expressed in Zong 31 in response to ethephon treatment. In summary, we showed that gaseous ethylene release is involved in internode meristem cell elongation through the regulation of plant hormone signaling in maize. This work provides a platform for studies in which candidate genes will be functionally tested for involvement in internode elongation.

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases.

          We isolated a recessive Arabidopsis mutant, ctr1, that constitutively exhibits seedling and adult phenotypes observed in plants treated with the plant hormone ethylene. The ctr1 adult morphology can be phenocopied by treatment of wild-type plants with exogenous ethylene and is due, at least in part, to inhibition of cell elongation. Seedlings and adult ctr1 plants show constitutive expression of ethylene-regulated genes. The epistasis of ctr1 and other ethylene response mutants has defined the position of CTR1 in the ethylene signal transduction pathway. The CTR1 gene has been cloned, and the DNA sequences of four mutant alleles were determined. The gene encodes a putative serine/threonine protein kinase that is most closely related to the Raf protein kinase family.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene.

            The introduction of semidwarf rice (Oryza sativa L.) led to record yield increases throughout Asia in the 1960s. The major semidwarfing allele, sd-1, is still extensively used in modern rice cultivars. The phenotype of sd-1 is consistent with dwarfism that results from a deficiency in gibberellin (GA) plant growth hormones. We propose that the semidwarf (sd-1) phenotype is the result of a deficiency of active GAs in the elongating stem arising from a defective 20-oxidase GA biosynthetic enzyme. Sequence data from the rice genome was combined with previous mapping studies to locate a putative GA 20-oxidase gene (Os20ox2) at the predicted map location of sd-1 on chromosome 1. Two independent sd-1 alleles contained alterations within Os20ox2: a deletion of 280 bp within the coding region of Os20ox2 was predicted to encode a nonfunctional protein in an indica type semidwarf (Doongara), whereas a substitution in an amino acid residue (Leu-266) that is highly conserved among dioxygenases could explain loss of function of Os20ox2 in a japonica semidwarf (Calrose76). The quantification of GAs in elongating stems by GC-MS showed that the initial substrate of GA 20-oxidase activity (GA53) accumulated, whereas the content of the major product (GA20) and of bioactive GA1 was lower in semidwarf compared with tall lines. We propose that the Os20ox2 gene corresponds to the sd-1 locus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development.

              Auxin plays a key role in lateral root formation, but the signaling pathway for this process is poorly understood. We show here that NAC1, a new member of the NAC family, is induced by auxin and mediates auxin signaling to promote lateral root development. NAC1 is a transcription activator consisting of an N-terminal conserved NAC-domain that binds to DNA and a C-terminal activation domain. This factor activates the expression of two downstream auxin-responsive genes, DBP and AIR3. Transgenic plants expressing sense or antisense NAC1 cDNA show an increase or reduction of lateral roots, respectively. Finally, TIR1-induced lateral root development is blocked by expression of antisense NAC1 cDNA, and NAC1 overexpression can restore lateral root formation in the auxin-response mutant tir1, indicating that NAC1 acts downstream of TIR1.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front. Agr. Sci. Eng.
                FASE
                CN10-1204/S
                Frontiers of Agricultural Science and Engineering
                Higher Education Press (4 Huixin Dongjie, Chaoyang District, Beijing 100029, China )
                2095-7505
                2095-977X
                2016
                : 3
                : 3
                : 263-282
                Affiliations
                [1 ]. State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education/College of Agronomy, China Agricultural University, Beijing 100193, China
                [2 ]. Xinxiang Academy of Agricultural Science, Xinxiang 453000, China
                Author notes
                duanlsh@cau.edu.cn
                Article
                10.15302/J-FASE-2016103
                36678a7c-412a-4809-a533-2834145af77f
                Copyright @ 2016
                History
                : 11 April 2016
                : 13 May 2016
                Categories
                RESEARCH ARTICLE

                Management,Industrial organization,Risk management,Economics
                maize,microarray,qPCR,ethephon,internode elongation

                Comments

                Comment on this article