2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Role of Thymulin or Its Analogue as a New Analgesic Molecule

      , ,
      Annals of the New York Academy of Sciences
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The thymic peptide thymulin is known for its immunomodulatory role. However, several recent reports have indicated that thymulin is capable of interacting directly and/or indirectly with the nervous system. One of the first lines of evidence of this interaction was obtained in a series of experiments showing the hyperalgesic actions of this peptide. We demonstrated that, at low doses (ng), local (intraplantar) or systemic (intraperitoneal) injections of thymulin resulted in hyperalgesia with an increase in proinflammatory mediators, and that this peptide could act directly on the afferent nerve terminals through prostaglandin-E2 (PGE2)-dependent mechanisms, thus forming a neuroimmune loop involving capsaicin-sensitive primary afferent fibers. In further experiments, systemic injections of relatively high doses (1-25 microg) of thymulin or of an analogue peptide (PAT) deprived of hyperalgesic effect, have been shown to reduce the inflammatory pain and the upregulated levels of cytokines induced by endotoxin (ET) injection. In addition, PAT treatment appeared to alleviate the sickness behavior (motor behavior and fever) induced by systemic inflammation. These effects could be attributed, at least partly, to the downregulation of proinflammatory mediators. Furthermore, when compared with the effects of other anti-inflammatory drugs, PAT exerted equal or even stronger analgesic effects, and at much lower concentrations. Subsequent experiments were designed to examine the effects of intracerebroventricular (i.c.v.) injections of thymulin on cerebral inflammation induced by i.c.v. injection of ET. Pretreatment with thymulin reduced, in a dose-dependent manner, the ET-induced hyperalgesia, and exerted differential effects on the upregulated levels of cytokines in different areas of the brain, suggesting a neuroprotective role for thymulin in the central nervous system (CNS). Preliminary results demonstrate that thymulin inhibits in the hippocampus the ET-induced nuclear activation of NF-kappaB, the transcription factor required for the expression of proinflammatory cytokines genes. Although the mechanism of action of these molecules is not totally elucidated, our results indicate a possible therapeutic use of thymulin or PAT as analgesic and anti-inflammatory drugs.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Cytokine-induced sickness behaviour: mechanisms and implications.

          Sickness behaviour represents the expression of the adaptive reorganization of the priorities of the host during an infectious episode. This process is triggered by pro-inflammatory cytokines produced by peripheral phagocytic cells in contact with invading micro-organisms. The peripheral immune message is relayed to the brain via a fast neural pathway and a slower humoral pathway, resulting in the expression of pro-inflammatory cytokines in macrophage-like cells and microglia in the brain. The cellular and molecular components of this previously unsuspected system are being progressively identified. These advances are opening new avenues for understanding brain disorders, including depression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation.

            Cyclooxygenase (COX) converts arachidonic acid to prostaglandin H2, which is further metabolized to prostanoids. Two isoforms of COX exist: a constitutive (COX-1) and an inducible (COX-2) enzyme. Nitric oxide is derived from L-arginine by isoforms of nitric-oxide synthase (NOS; EC 1.14.13.39): constitutive (cNOS; calcium-dependent) and inducible (iNOS; calcium-independent). Here we have investigated inducible isoforms of COX and NOS in the acute, chronic, and resolving stages of a murine air pouch model of granulomatous inflammation. COX and NOS activities were measured in skin samples in the acute phase, up to 24 h. Activities in granulomatous tissue were measured at 3, 5, 7, 14, and 21 days for the chronic and resolving stages of inflammation. COX-1 and COX-2 proteins were assessed by Western blot. COX activity in the skin increased over the first 24 h and continued to rise up to day 14. COX-2 protein rose progressively, also peaking at day 14. COX-1 protein remained unaltered throughout. The iNOS activity increased over the first 24 h in the skin, with a further major increase in the granulomatous tissue between days 3 and 7, followed by a decrease at day 14 and a further increase at day 21. The rise in COX and NOS activities in the skin during the acute phase reinforces the proinflammatory role for prostanoids and suggests one also for nitric oxide. However, in the chronic and resolving stages, a dissociation of COX and NOS activity occurred. Thus, there may be differential regulation of these enzymes, perhaps due to the changing pattern of cytokines during the inflammatory response.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nerve growth factor contributes to the generation of inflammatory sensory hypersensitivity.

              Experimental inflammation produced by an intraplantar injection of complete Freund's adjuvant results in local sensory hypersensitivity and up-regulates the neuropeptides substance P and calcitonin gene related peptide in the primary sensory neurons innervating the inflamed tissue. The inflammation also elevates nerve growth factor levels in the skin. Systemic administration of anti-NGF neutralizing antibodies prevent the behavioral sensitivity, the up-regulation of neuropeptides and the inflammation-induced expression of the immediate early gene c-fos in dorsal horn neurons, without modifying swelling and erythema. Elevation of the neurotrophin NGF in the periphery is a major contributor, therefore, of inflammatory pain.
                Bookmark

                Author and article information

                Journal
                Annals of the New York Academy of Sciences
                Annals of the New York Academy of Sciences
                Wiley-Blackwell
                0077-8923
                November 01 2006
                November 01 2006
                : 1088
                : 1
                : 153-163
                Article
                10.1196/annals.1366.006
                17192563
                3667d183-21b2-431f-9ce9-07f286971e1d
                © 2006

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article