Blog
About

12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endothelial nitric oxide synthase gene polymorphisms and risk of diabetic nephropathy: a systematic review and meta-analysis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Nitric oxide (NO) has numerous functions in the kidney, including control of renal and glomerular hemodynamics, by interfering at multiple pathological and physiologically critical steps of nephron function. Endothelial NOS (eNOS) gene has been considered a potential candidate gene to diabetic nephropathy (DN) susceptibility. Endothelial nitric oxide synthase gene (eNOS-3) polymorphisms have been associated with DN, however some studies do not confirm this association. The analyzed polymorphisms were 4b/4a, T-786C, and G986T.

          Methods

          The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement was used in this report. Case–control studies that had diabetic patients with DN as cases and diabetic patients without nephropathy as controls, as well as that evaluated at least one of the three polymorphisms of interest were considered eligible. All studies published up until December 31 st, 2012 were identified by searching electronic databases. Hardy-Weinberg equilibrium assessment was performed. Gene-disease association was measured using odds ratio estimation based on the following genetic contrast/models: (1) allele contrast; (2) additive model; (3) recessive model; (4) dominant model and (4) co-dominant model.

          Results

          Twenty-two studies were eligible for meta-analysis (4b/a: 15 studies, T-786C: 5 studies, and G984T: 12 studies). Considering 4b/a polymorphism, an association with DN was observed for all genetic models: allele contrast (OR = 1.14, CI: 1.04-1.25); additive (OR = 1.77, CI: 1.37-2.28); recessive (OR = 1.77, CI: 1.38-2,27); dominant (OR = 1.12, CI: 1.01-1.24), with the exception for co-dominance model. As well, T-786C polymorphism showed association with all models, with exception for co-dominance model: allele contrast (OR = 1.22, CI: 1.07-1.39), additive (OR = 1.52, CI: 1.18-1.97), recessive (OR = 1.50, CI: 1.16-1.93), and dominant (OR = 1.11, CI: 1.01-1.23). For the G894T polymorphism, an association with DN was observed in allelic contrast (OR = 1.12, CI: 1.03-1.25) and co-dominance models (OR = 1.13, CI: 1.04-1.37).

          Conclusions

          In the present study, there was association of DN with eNOS 4b/a and T-786C polymorphism, which held in all genetic models tested, except for co-dominance model. G894T polymorphism was associated with DN only in allele contrast and in co-dominance model. This data suggested that the eNOS gene could play a role in the development of DN.

          Related collections

          Most cited references 37

          • Record: found
          • Abstract: found
          • Article: not found

          Diabetic nephropathy: diagnosis, prevention, and treatment.

          Diabetic nephropathy is the leading cause of kidney disease in patients starting renal replacement therapy and affects approximately 40% of type 1 and type 2 diabetic patients. It increases the risk of death, mainly from cardiovascular causes, and is defined by increased urinary albumin excretion (UAE) in the absence of other renal diseases. Diabetic nephropathy is categorized into stages: microalbuminuria (UAE >20 microg/min and or =200 microg/min). Hyperglycemia, increased blood pressure levels, and genetic predisposition are the main risk factors for the development of diabetic nephropathy. Elevated serum lipids, smoking habits, and the amount and origin of dietary protein also seem to play a role as risk factors. Screening for microalbuminuria should be performed yearly, starting 5 years after diagnosis in type 1 diabetes or earlier in the presence of puberty or poor metabolic control. In patients with type 2 diabetes, screening should be performed at diagnosis and yearly thereafter. Patients with micro- and macroalbuminuria should undergo an evaluation regarding the presence of comorbid associations, especially retinopathy and macrovascular disease. Achieving the best metabolic control (A1c 1.0 g/24 h and increased serum creatinine), using drugs with blockade effect on the renin-angiotensin-aldosterone system, and treating dyslipidemia (LDL cholesterol <100 mg/dl) are effective strategies for preventing the development of microalbuminuria, in delaying the progression to more advanced stages of nephropathy and in reducing cardiovascular mortality in patients with type 1 and type 2 diabetes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Nitric oxide: a physiologic messenger molecule.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic variation, classification and 'race'.

              New genetic data has enabled scientists to re-examine the relationship between human genetic variation and 'race'. We review the results of genetic analyses that show that human genetic variation is geographically structured, in accord with historical patterns of gene flow and genetic drift. Analysis of many loci now yields reasonably accurate estimates of genetic similarity among individuals, rather than populations. Clustering of individuals is correlated with geographic origin or ancestry. These clusters are also correlated with some traditional concepts of race, but the correlations are imperfect because genetic variation tends to be distributed in a continuous, overlapping fashion among populations. Therefore, ancestry, or even race, may in some cases prove useful in the biomedical setting, but direct assessment of disease-related genetic variation will ultimately yield more accurate and beneficial information.
                Bookmark

                Author and article information

                Journal
                BMC Med Genet
                BMC Med. Genet
                BMC Medical Genetics
                BioMed Central
                1471-2350
                2014
                16 January 2014
                : 15
                : 9
                Affiliations
                [1 ]Endocrine Division, Hospital de Clínicas de Porto Alegre, Ramiro Barcelos 2350, CEP 90035-903 Porto Alegre, RS, Brazil
                [2 ]Universidade Luterana do Brasil, Canoas, Brazil
                Article
                1471-2350-15-9
                10.1186/1471-2350-15-9
                3900462
                24433471
                Copyright © 2014 Dellamea et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Categories
                Research Article

                Genetics

                Comments

                Comment on this article