62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expression Levels of LCORL Are Associated with Body Size in Horses

      research-article
      , , , *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Body size is an important characteristic for horses of various breeds and essential for the classification of ponies concerning the limit value of 148 cm (58.27 inches) height at the withers. Genome-wide association analyses revealed the highest associated quantitative trait locus for height at the withers on horse chromosome (ECA) 3 upstream of the candidate gene LCORL. Using 214 Hanoverian horses genotyped on the Illumina equine SNP50 BeadChip and 42 different horse breeds across all size ranges, we confirmed the highly associated single nucleotide polymorphism BIEC2-808543 (−log 10P = 8.3) and the adjacent gene LCORL as the most promising candidate for body size. We investigated the relative expression levels of LCORL and its two neighbouring genes NCAPG and DCAF16 using quantitative real-time PCR (RT-qPCR). We could demonstrate a significant association of the relative LCORL expression levels with the size of the horses and the BIEC2-808543 genotypes within and across horse breeds. In heterozygous C/T-horses expression levels of LCORL were significantly decreased by 40% and in homozygous C/C-horses by 56% relative to the smaller T/T-horses. Bioinformatic analyses indicated that this SNP T>C mutation is disrupting a putative binding site of the transcription factor TFIID which is important for the transcription process of genes involved in skeletal bone development. Thus, our findings suggest that expression levels of LCORL play a key role for body size within and across horse breeds and regulation of the expression of LCORL is associated with genetic variants of BIEC2-808543. This is the first functional study for a body size regulating polymorphism in horses and a further step to unravel the mechanisms for understanding the genetic regulation of body size in horses.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Genome sequence, comparative analysis, and population genetics of the domestic horse.

          We report a high-quality draft sequence of the genome of the horse (Equus caballus). The genome is relatively repetitive but has little segmental duplication. Chromosomes appear to have undergone few historical rearrangements: 53% of equine chromosomes show conserved synteny to a single human chromosome. Equine chromosome 11 is shown to have an evolutionary new centromere devoid of centromeric satellite DNA, suggesting that centromeric function may arise before satellite repeat accumulation. Linkage disequilibrium, showing the influences of early domestication of large herds of female horses, is intermediate in length between dog and human, and there is long-range haplotype sharing among breeds.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Many sequence variants affecting diversity of adult human height.

            Adult human height is one of the classical complex human traits. We searched for sequence variants that affect height by scanning the genomes of 25,174 Icelanders, 2,876 Dutch, 1,770 European Americans and 1,148 African Americans. We then combined these results with previously published results from the Diabetes Genetics Initiative on 3,024 Scandinavians and tested a selected subset of SNPs in 5,517 Danes. We identified 27 regions of the genome with one or more sequence variants showing significant association with height. The estimated effects per allele of these variants ranged between 0.3 and 0.6 cm and, taken together, they explain around 3.7% of the population variation in height. The genes neighboring the identified loci cluster in biological processes related to skeletal development and mitosis. Association to three previously reported loci are replicated in our analyses, and the strongest association was with SNPs in the ZBTB38 gene.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Four Loci Explain 83% of Size Variation in the Horse

              Horse body size varies greatly due to intense selection within each breed. American Miniatures are less than one meter tall at the withers while Shires and Percherons can exceed two meters. The genetic basis for this variation is not known. We hypothesize that the breed population structure of the horse should simplify efforts to identify genes controlling size. In support of this, here we show with genome-wide association scans (GWAS) that genetic variation at just four loci can explain the great majority of horse size variation. Unlike humans, which are naturally reproducing and possess many genetic variants with weak effects on size, we show that horses, like other domestic mammals, carry just a small number of size loci with alleles of large effect. Furthermore, three of our horse size loci contain the LCORL, HMGA2 and ZFAT genes that have previously been found to control human height. The LCORL/NCAPG locus is also implicated in cattle growth and HMGA2 is associated with dog size. Extreme size diversification is a hallmark of domestication. Our results in the horse, complemented by the prior work in cattle and dog, serve to pinpoint those very few genes that have played major roles in the rapid evolution of size during domestication.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                13 February 2013
                : 8
                : 2
                : e56497
                Affiliations
                [1]Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
                University of Tasmania, Australia
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: OD JM UP. Performed the experiments: JM UP OD RS. Analyzed the data: JM OD UP. Contributed reagents/materials/analysis tools: OD JM. Wrote the paper: JM OD.

                Article
                PONE-D-12-25994
                10.1371/journal.pone.0056497
                3572084
                23418579
                367d5b26-dbb4-445b-8c00-e3448523ad4d
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 August 2012
                : 10 January 2013
                Page count
                Pages: 9
                Funding
                This study was supported by the Mehl-Mülhens Stiftung, Köln (DI-MM/1-1). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Agriculture
                Agricultural Biotechnology
                Marker-Assisted Selection
                Biology
                Anatomy and Physiology
                Musculoskeletal System
                Bone
                Genetics
                Animal Genetics
                Gene Expression
                Gene Function
                Genome-Wide Association Studies
                Genomics
                Genome Analysis Tools
                Genome-Wide Association Studies
                Trait Locus Analysis
                Functional Genomics
                Population Biology
                Population Genetics
                Genetic Polymorphism
                Veterinary Science
                Animal Management
                Animal Breeding
                Animal Types
                Large Animals
                Veterinary Anatomy and Physiology
                Animal Musculoskeletal Anatomy

                Uncategorized
                Uncategorized

                Comments

                Comment on this article