29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Inclusion of Oxford Nanopore long reads improves all microbial and viral metagenome‐assembled genomes from a complex aquifer system

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Community structure and metabolism through reconstruction of microbial genomes from the environment.

          Microbial communities are vital in the functioning of all ecosystems; however, most microorganisms are uncultivated, and their roles in natural systems are unclear. Here, using random shotgun sequencing of DNA from a natural acidophilic biofilm, we report reconstruction of near-complete genomes of Leptospirillum group II and Ferroplasma type II, and partial recovery of three other genomes. This was possible because the biofilm was dominated by a small number of species populations and the frequency of genomic rearrangements and gene insertions or deletions was relatively low. Because each sequence read came from a different individual, we could determine that single-nucleotide polymorphisms are the predominant form of heterogeneity at the strain level. The Leptospirillum group II genome had remarkably few nucleotide polymorphisms, despite the existence of low-abundance variants. The Ferroplasma type II genome seems to be a composite from three ancestral strains that have undergone homologous recombination to form a large population of mosaic genomes. Analysis of the gene complement for each organism revealed the pathways for carbon and nitrogen fixation and energy generation, and provided insights into survival strategies in an extreme environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lysogeny in nature: mechanisms, impact and ecology of temperate phages.

            Viruses that infect bacteria (phages) can influence bacterial community dynamics, bacterial genome evolution and ecosystem biogeochemistry. These influences differ depending on whether phages establish lytic, chronic or lysogenic infections. Although the first two produce virion progeny, with lytic infections resulting in cell destruction, phages undergoing lysogenic infections replicate with cells without producing virions. The impacts of lysogeny are numerous and well-studied at the cellular level, but ecosystem-level consequences remain underexplored compared to those of lytic infections. Here, we review lysogeny from molecular mechanisms to ecological patterns to emerging approaches of investigation. Our goal is to highlight both its diversity and importance in complex communities. Altogether, using a combined viral ecology toolkit that is applied across broad model systems and environments will help us understand more of the diverse lifestyles and ecological impacts of lysogens in nature.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences

              Background Microbiome studies often involve sequencing a marker gene to identify the microorganisms in samples of interest. Sequence classification is a critical component of this process, whereby sequences are assigned to a reference taxonomy containing known sequence representatives of many microbial groups. Previous studies have shown that existing classification programs often assign sequences to reference groups even if they belong to novel taxonomic groups that are absent from the reference taxonomy. This high rate of “over classification” is particularly detrimental in microbiome studies because reference taxonomies are far from comprehensive. Results Here, we introduce IDTAXA, a novel approach to taxonomic classification that employs principles from machine learning to reduce over classification errors. Using multiple reference taxonomies, we demonstrate that IDTAXA has higher accuracy than popular classifiers such as BLAST, MAPSeq, QIIME, SINTAX, SPINGO, and the RDP Classifier. Similarly, IDTAXA yields far fewer over classifications on Illumina mock microbial community data when the expected taxa are absent from the training set. Furthermore, IDTAXA offers many practical advantages over other classifiers, such as maintaining low error rates across varying input sequence lengths and withholding classifications from input sequences composed of random nucleotides or repeats. Conclusions IDTAXA’s classifications may lead to different conclusions in microbiome studies because of the substantially reduced number of taxa that are incorrectly identified through over classification. Although misclassification error is relatively minor, we believe that many remaining misclassifications are likely caused by errors in the reference taxonomy. We describe how IDTAXA is able to identify many putative mislabeling errors in reference taxonomies, enabling training sets to be automatically corrected by eliminating spurious sequences. IDTAXA is part of the DECIPHER package for the R programming language, available through the Bioconductor repository or accessible online (http://DECIPHER.codes). Electronic supplementary material The online version of this article (10.1186/s40168-018-0521-5) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Environmental Microbiology
                Environ Microbiol
                Wiley
                1462-2912
                1462-2920
                August 20 2020
                Affiliations
                [1 ]Institute of Biodiversity, Aquatic GeomicrobiologyFriedrich Schiller University Jena Germany
                [2 ]RNA Bioinformatics and High‐Throughput AnalysisFriedrich Schiller University Jena Germany
                [3 ]European Virus Bioinformatics CenterFriedrich Schiller University Jena Germany
                [4 ]FLI Leibniz Institute for Age Research Jena Germany
                [5 ]German Center for Integrative Biodiversity Research Halle‐Jena‐Leipzig Leipzig Germany
                Article
                10.1111/1462-2920.15186
                32761733
                367d5d55-d6f4-45cf-9153-a63952e68e38
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article