12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of Endogenous Sodium Channels in the ND7-23 Neuroblastoma Cell Line: Implications for Use as a Heterologous Ion Channel Expression System Suitable for Automated Patch Clamp Screening

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The rodent neuroblastoma cell line, ND7-23, is used to express voltage-dependent sodium (Nav) and other neuronal ion channels resistant to heterologous expression in Chinese hamster ovary (CHO) or human embryonic kidney (HEK) cells. Their advantage is that they provide endogenous factors and signaling pathways to promote ion channel peptide folding, expression, and function at the cell surface and are also amenable to automated patch clamping. However, ND7-23 cells exhibit endogenous tetrodotoxin (TTX)-sensitive Nav currents, and molecular profiling has revealed the presence of Nav1.2, Nav1.3, Nav1.6, and Nav1.7 transcripts, but no study has determined which subtypes contribute to functional channels at the cell surface. We profiled the repertoire of functional Nav channels endogenously expressed in ND7-23 cells using the QPatch automated patch clamp platform and selective toxins and small molecules. The potency and subtype selectivity of the ligands (Icagen compound 68 from patent US-20060025415-A1-20060202, 4,9 anhydro TTX, and Protoxin-II) were established in human Nav1.3, Nav1.6, and Nav1.7 channel cell lines before application of selective concentrations to ND7-23 cells. Our data confirm previous studies that >97% of macroscopic Nav current in ND7-23 cells is carried by TTX-sensitive channels (300 nM TTX) and that Nav1.7 is the predominant channel contributing to this response (65% of peak inward current), followed by Nav1.6 (∼20%) and negligible Nav1.3 currents (∼2%). In addition, our data are the first to assess the Nav1.6 potency (50% inhibitory concentration [IC 50] of 33 nM) and selectivity (50-fold over Nav1.7) of 4,9 anhydro TTX in human Nav channels expressed in mammalian cells, confirming previous studies of rodent Nav channels expressed in oocytes and HEK cells.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          A de novo gain-of-function mutation in SCN11A causes loss of pain perception.

          The sensation of pain protects the body from serious injury. Using exome sequencing, we identified a specific de novo missense mutation in SCN11A in individuals with the congenital inability to experience pain who suffer from recurrent tissue damage and severe mutilations. Heterozygous knock-in mice carrying the orthologous mutation showed reduced sensitivity to pain and self-inflicted tissue lesions, recapitulating aspects of the human phenotype. SCN11A encodes Nav1.9, a voltage-gated sodium ion channel that is primarily expressed in nociceptors, which function as key relay stations for the electrical transmission of pain signals from the periphery to the central nervous system. Mutant Nav1.9 channels displayed excessive activity at resting voltages, causing sustained depolarization of nociceptors, impaired generation of action potentials and aberrant synaptic transmission. The gain-of-function mechanism that underlies this channelopathy suggests an alternative way to modulate pain perception.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            ProTx-II, a selective inhibitor of NaV1.7 sodium channels, blocks action potential propagation in nociceptors.

            Voltage-gated sodium (Na(V)1) channels play a critical role in modulating the excitability of sensory neurons, and human genetic evidence points to Na(V)1.7 as an essential contributor to pain signaling. Human loss-of-function mutations in SCN9A, the gene encoding Na(V)1.7, cause channelopathy-associated indifference to pain (CIP), whereas gain-of-function mutations are associated with two inherited painful neuropathies. Although the human genetic data make Na(V)1.7 an attractive target for the development of analgesics, pharmacological proof-of-concept in experimental pain models requires Na(V)1.7-selective channel blockers. Here, we show that the tarantula venom peptide ProTx-II selectively interacts with Na(V)1.7 channels, inhibiting Na(V)1.7 with an IC(50) value of 0.3 nM, compared with IC(50) values of 30 to 150 nM for other heterologously expressed Na(V)1 subtypes. This subtype selectivity was abolished by a point mutation in DIIS3. It is interesting that application of ProTx-II to desheathed cutaneous nerves completely blocked the C-fiber compound action potential at concentrations that had little effect on Abeta-fiber conduction. ProTx-II application had little effect on action potential propagation of the intact nerve, which may explain why ProTx-II was not efficacious in rodent models of acute and inflammatory pain. Mono-iodo-ProTx-II ((125)I-ProTx-II) binds with high affinity (K(d) = 0.3 nM) to recombinant hNa(V)1.7 channels. Binding of (125)I-ProTx-II is insensitive to the presence of other well characterized Na(V)1 channel modulators, suggesting that ProTx-II binds to a novel site, which may be more conducive to conferring subtype selectivity than the site occupied by traditional local anesthetics and anticonvulsants. Thus, the (125)I-ProTx-II binding assay, described here, offers a new tool in the search for novel Na(V)1.7-selective blockers.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels.

              Voltage-gated sodium (Nav) channels play a fundamental role in the generation and propagation of electrical impulses in excitable cells. Here we describe two unique structurally related nanomolar potent small molecule Nav channel inhibitors that exhibit up to 1,000-fold selectivity for human Nav1.3/Nav1.1 (ICA-121431, IC50, 19 nM) or Nav1.7 (PF-04856264, IC50, 28 nM) vs. other TTX-sensitive or resistant (i.e., Nav1.5) sodium channels. Using both chimeras and single point mutations, we demonstrate that this unique class of sodium channel inhibitor interacts with the S1-S4 voltage sensor segment of homologous Domain 4. Amino acid residues in the "extracellular" facing regions of the S2 and S3 transmembrane segments of Nav1.3 and Nav1.7 seem to be major determinants of Nav subtype selectivity and to confer differences in species sensitivity to these inhibitors. The unique interaction region on the Domain 4 voltage sensor segment is distinct from the structural domains forming the channel pore, as well as previously characterized interaction sites for other small molecule inhibitors, including local anesthetics and TTX. However, this interaction region does include at least one amino acid residue [E1559 (Nav1.3)/D1586 (Nav1.7)] that is important for Site 3 α-scorpion and anemone polypeptide toxin modulators of Nav channel inactivation. The present study provides a potential framework for identifying subtype selective small molecule sodium channel inhibitors targeting interaction sites away from the pore region.
                Bookmark

                Author and article information

                Journal
                Assay Drug Dev Technol
                Assay Drug Dev Technol
                adt
                Assay and Drug Development Technologies
                Mary Ann Liebert, Inc. (140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA )
                1540-658X
                1557-8127
                01 March 2016
                01 March 2016
                : 14
                : 2
                : 109-130
                Affiliations
                [ 1 ]Xention Limited , Cambridge, United Kingdom.
                [ 2 ]Faculty of Pharmacy, University of Ljubljana , Ljubljana, Slovenia.
                Author notes
                [*]

                Present address: Metrion Biosciences Ltd., Cambridge, United Kingdom.

                Address correspondence to: Marc Rogers, PhD, Metrion Biosciences Ltd., Building B501, Babraham Research Campus Cambridge CB22 3AT, United Kingdom

                E-mail: marc.rogers@ 123456metrionbiosciences.com
                Article
                10.1089/adt.2016.704
                10.1089/adt.2016.704
                4800267
                26991361
                3680f618-8982-45b9-b89c-7f499a2b2ed4
                © Marc Rogers et al., 2016; Published by Mary Ann Liebert, Inc.

                This Open Access article is distributed under the terms of the Creative Commons Attribution Noncommercial License ( http://creativecommons.org/licenses/by-nc/4.0/) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                History
                Page count
                Figures: 10, Tables: 1, References: 64, Pages: 22
                Categories
                Original Articles

                Comments

                Comment on this article