13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington's disease.

      Nature genetics
      Adolescent, Adult, Age Factors, Aged, Base Sequence, Female, Genetic Variation, Humans, Huntington Disease, genetics, Male, Middle Aged, Molecular Sequence Data, Oligodeoxyribonucleotides, Phenotype, Polymerase Chain Reaction, Reference Values, Repetitive Sequences, Nucleic Acid

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The molecular analysis of a specific CAG repeat sequence in the Huntington's disease gene in 440 Huntington's disease patients and 360 normal controls reveals a range of 30-70 repeats in affected individuals and 9-34 in normals. We find significant negative correlations between the number of repeats on the HD chromosome and age at onset, regardless of sex of the transmitting parent, and between the number of repeats on the normal paternal allele and age at onset in individuals with maternally transmitted disease. This effect of the normal paternal allele may account for the weaker age at onset correlation between affected sib pairs with disease of maternal as opposed to paternal origin and suggests that normal gene function varies because of the size of the repeat in the normal range and a sex-specific modifying effect.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1.

          Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant disorder characterized by neurodegeneration of the cerebellum, spinal cord and brainstem. A 1.2-Megabase stretch of DNA from the short arm of chromosome 6 containing the SCA1 locus was isolated in a yeast artificial chromosome contig and subcloned into cosmids. A highly polymorphic CAG repeat was identified in this region and was found to be unstable and expanded in individuals with SCA1. There is a direct correlation between the size of the (CAG)n repeat expansion and the age-of-onset of SCA1, with larger alleles occurring in juvenile cases. We also show that the repeat is present in a 10 kilobase mRNA transcript. SCA1 is therefore the fifth genetic disorder to display a mutational mechanism involving an unstable trinucleotide repeat.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy.

              Myotonic dystrophy is the commonest adult form of muscular dystrophy, with an estimated incidence of 1 per 7,500, although this is likely to be an underestimate because of the difficulty of detecting minimally affected individuals. It is a multisystem autosomal dominant disorder of unknown biochemical basis. No case of new mutation has been proven. We have isolated a human genomic clone that detects novel restriction fragments specific to individuals with myotonic dystrophy. A two-allele EcoRI polymorphism is seen in normal individuals, but in most affected individuals one of the normal alleles is replaced by a larger fragment, which varies in length both between unrelated affected individuals and within families. The unstable nature of this region may explain the characteristic variation in severity and age at onset of the disease. A second polymorphism at this locus is in almost complete linkage disequilibrium with myotonic dystrophy, strongly supporting our earlier results which indicated that most cases are descended from one original mutation.
                Bookmark

                Author and article information

                Comments

                Comment on this article