12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Breath condensate hydrogen peroxide correlates with both airway cytology and epithelial lining fluid ascorbic acid concentration in the horse.

      Free Radical Research
      Airway Obstruction, diagnosis, pathology, Animals, Ascorbic Acid, analysis, metabolism, Breath Tests, methods, Bronchoalveolar Lavage Fluid, cytology, Bronchoscopy, Cell Count, Dehydroascorbic Acid, Diagnosis, Differential, Disease Models, Animal, Glutathione, Horses, Hydrogen Peroxide, Inflammation, Mucus, Neutrophils, Respiratory Mucosa, chemistry, Respiratory System, Spectrophotometry

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The relationship between hydrogen peroxide (H2O2) concentration in expired breath condensate (EBC) and cytology of the respiratory tract obtained from tracheal wash (TW) or bronchoalveolar lavage (BAL), and epithelial lining fluid (ELF) antioxidant status is unknown. To examine this we analysed the concentration of H2O2 in breath condensate from healthy horses and horses affected by recurrent airway obstruction (RAO), a condition considered to be an animal model of human asthma. The degree of airway inflammation was determined by assessing TW inflammation as mucus, cell density and neutrophil scores, and by BAL cytology. ELF antioxidant status was determined by measurement of ascorbic acid, dehydroascorbate, reduced and oxidised glutathione, uric acid and alpha-tocopherol concentrations. RAO-affected horses with marked airway inflammation had significantly higher concentrations of breath condensate H2O2 than control horses and RAO-affected horses in the absence of inflammation (2.0 +/- 0.5 micromol/l. 0.4 +/- 0.2 micromol/l and 0.9 +/- 0.2 micromol/l H2O2, respectively; p < 0.0001). The concentration of breath condensate H2O2 was related inversely to the concentration of ascorbic acid in ELF (r = -0.80; p < 0.0001) and correlated positively with TW inflammation score (r = 0.76, p < 0.0001) and BAL neutrophil count (r = 0.80, p < 0.0001). We conclude that the concentration of H2O2 in breath condensate influences the ELF ascorbic acid concentration and provides a non-invasive diagnostic indicator of the severity of neutrophilic airway inflammation.

          Related collections

          Author and article information

          Comments

          Comment on this article