21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effect of microbial inoculants on the quality and aerobic stability of bermudagrass round-bale haylage.

      Journal of dairy science
      American Dairy Science Association
      silage inoculant, Bermudagrass haylage

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The objective of this study was to compare the efficacy of using 4 commercially available microbial inoculants to improve the fermentation and aerobic stability of bermudagrass haylage. We hypothesized that the microbial inoculants would increase the fermentation and aerobic stability of the haylages. Bermudagrass (4-wk regrowth) was harvested and treated with (1) deionized water (control); (2) Buchneri 500 (B500; Lallemand Animal Nutrition, Milwaukee, WI) containing 1×10(5) of Pediococcus pentosaceus and 4×10(5) of Lactobacillus buchneri 40788; (3) Biotal Plus II (BPII; Lallemand Animal Nutrition) containing 1.2×10(5) of P. pentosaceus and Propionibacteria freudenreichii; (4) Silage Inoculant II (SI; AgriKing Inc., Fulton, IL) containing 1×10(5) of Lactobacillus plantarum and P. pentosaceus; and (5) Silo King (SK; AgriKing Inc.), containing 1×10(5) of L. plantarum, Enterococcus faecium, and P. pentosaceus, respectively. Forty round bales (8 per treatment; 441±26kg; 1.2×1.2 m diameter) were made and each was wrapped with 7 layers of plastic. Twenty bales were stored for 112 d and the remaining 20 were stored for 30 d and sampled by coring after intermediary storage periods of 0, 3, 7, and 30 d. The pH of control and inoculated haylages sampled on d 3 did not differ. However, B500 and BPII had lower pH (5.77±0.04 vs. 6.16±0.04; 5.06±0.13 vs. 5.52±0.13) than other treatments by d 7 and 30, respectively. At final bale opening on d 112, all treatments had lower pH than the control haylage (4.77±0.07 vs. 5.37±0.07). The B500, BPII, and SI haylages had greater lactic acid and lactic-to-acetic acid ratios than SK and control haylages. No differences were detected in neutral detergent fiber digestibility, dry matter losses, dry matter, lactic and acetic acid concentrations, and yeast and coliform counts. The SK haylage had lower clostridia counts compared with the control (1.19±0.23 vs. 1.99±0.23 cfu/g). Treatments B500, BPII, SI, and SK tended to reduce mold counts and they improved aerobic stability by 236, 197, 188, and 95%, respectively, compared with the control (276±22 vs. 99±22h).

          Related collections

          Most cited references17

          • Record: found
          • Abstract: not found
          • Article: not found

          Nitrogen Fractions in Selected Feedstuffs

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The effect of Lactobacillus buchneri, Lactobacillus plantarum, or a chemical preservative on the fermentation and aerobic stability of corn silage.

            Several microorganisms and one chemical preservative were tested for their effects on the fermentation and aerobic stability of corn silage. Whole-plant corn (one-half milk line, 31.3% dry matter) was ensiled in quadruplicate 20-L laboratory silos untreated or after the following treatments: Lactobacillus buchneri at 1 x 10(5) and 1 x 10(6) cfu/g of fresh forage; two different strains of L. plantarum, each at 1 x 10(6) cfu/g; and a buffered propionic acid-based product at 0.1% of fresh forage weight. After 100 d of ensiling, silage treated with L. buchneri (1 x 10(6) cfu/g) had a lower concentration of lactic acid compared with the untreated silage, but was similar to other treated silages. The silage treated with the high (1 x 10(6) cfu/g), but not the moderate rate (1 x 10(5) cfu/g) of L. buchneri also had a greater concentration of acetic acid (3.60%) and less yeasts (2.01 log cfu/g) when compared with other treatments (average of 1.88% acetic acid and 5.85 log cfu of yeasts/g). Silages treated with L. plantarums, the moderate rate of L. buchneri, and the chemical preservative took longer to heat than untreated silage when exposed to air, but improvements were numerically small (6.3 to 10.5 h). In contrast, silage treated with the high rate of L. buchneri never heated throughout a 900-h period of monitoring. Inoculating corn silage with 1 x 10(6) cfu/g of L. buchneri resulted in a more heterolactic fermentation and dramatically improved the aerobic stability of corn silage.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Fermentation characteristics and aerobic stability of grass silage inoculated with Lactobacillus buchneri, with or without homofermentative lactic acid bacteria

                Bookmark

                Author and article information

                Journal
                25465545
                10.3168/jds.2014-8411

                silage inoculant,Bermudagrass haylage
                silage inoculant, Bermudagrass haylage

                Comments

                Comment on this article