12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modeling ripple oscillations in the hippocampus

      abstract
      1 , 2 , , 2 , 1 , 2
      BMC Neuroscience
      BioMed Central
      Twenty Second Annual Computational Neuroscience Meeting: CNS*2013
      13-18 July 2013

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sharp wave-ripples (SWRs) are highly synchronous network events displayed by the mammalian hippocampus during slow-wave sleep and immobile resting periods. A SWR event (~100 ms duration) is characterized by fast network oscillations (~200 Hz "ripples") superimposed by a sharp wave, which is a large-amplitude, low-frequency (<10 Hz) signature in the local field potential of the hippocampal CA1 region. Such events are involved in memory consolidation. Understanding the mechanisms that give rise to SWRs can help us to gain insights on the computations being implemented during memory consolidation. Despite a large amount of electrophysiological data on SWRs in vivo (e.g. [1]) and in vitro (e.g. [2-4]) and many computational models (e.g. [5] and [6]), the basic mechanisms behind SWR generation remain elusive. Regarding the origin of the high-frequency ripple component during SWRs, two (not mutually exclusive) generative mechanisms have been proposed: First, a rhythmic output of a network of principal cells coupled by gap junctions, presumably between axons of pyramidal cells [5]. Second, an interneuron network coupled by chemical synapses that modulates the firing of pyramidal cells [6]. Modeling studies showed that both mechanisms can give rise to a prominent ripple component in the 200 Hz range. These two mechanisms could not only coexist but also be differentially expressed during SWR generation. Here we explore the oscillatory behavior of an in-silico model of a CA1 interneuron network to mimic in-vitro recordings from CA1 slices in which excitatory synaptic transmission is blocked and SWRs are induced by application of brief potassium puffs, which transiently excite neurons [3]. In such a preparation, the two proposed ripple generating mechanisms are decoupled and can be studied in isolation. Focusing on a model of a random interneuron network, we found that the power of ripple oscillations is stable for a wide range of the strength of the recurrent inhibitory coupling. A reduction of inhibitory conductance leads to a slight increase in network frequency, which is in line with [4]. Furthermore, larger reductions of inhibitory coupling leads to an abrupt decay of ripple power (see also [3]). Thus, some of the phenomenology of SWRs in vitro can be described in terms of chemical synaptic inhibition.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: not found

          Coherent phasic excitation during hippocampal ripples.

          High-frequency hippocampal network oscillations, or "ripples," are thought to be involved in episodic memory. According to current theories, memory traces are represented by assemblies of principal neurons that are activated during ripple-associated network states. Here we performed in vivo and in vitro experiments to investigate the synaptic mechanisms during ripples. We discovered postsynaptic currents that are phase-locked to ripples and coherent among even distant CA1 pyramidal neurons. These fast currents are consistent with excitatory postsynaptic currents (EPSCs) as they are observed at the equilibrium potential of Cl(-), and they display kinetics characteristic of EPSCs. Furthermore, they survived after intracellular blockade of GABAergic transmission and are effective to regulate the timing of action potentials. In addition, our data show a progressive synchronization of phasic excitation and inhibition during the course of ripples. Together, our results demonstrate the presence of phasic excitation during ripples reflecting an exquisite temporal coordination of assemblies of active pyramidal cells. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions.

            In hippocampal slices, high-frequency (125-333 Hz) synchronized oscillations have been shown to occur amongst populations of pyramidal neurons, in a manner that is independent of chemical synaptic transmission, but which is dependent upon gap junctions. At the intracellular level, high-frequency oscillations are associated with full-sized action potentials and with fast prepotentials. Using simulations of two pyramidal neurons, we previously argued that the submillisecond synchrony, and the rapid time-course of fast prepotentials, could be explained, in principle, if the requisite gap junctions were located between pyramidal cell axons. Here, we use network simulations (3072 pyramidal cells) to explore further the hypothesis that gap junctions occur between axons and could explain high-frequency oscillations. We show that, in randomly connected networks with an average of two gap junctions per cell, or less, synchronized network bursts can arise without chemical synapses, with frequencies in the experimentally observed range (spectral peaks 125-182 Hz). These bursts are associated with fast prepotentials (or partial spikes and spikelets) as observed in physiological recordings. The critical assumptions we must make for the oscillations to occur are: (i) there is a background of ectopic axonal spikes, which can occur at low frequency (one event per 25 s per axon); (ii) the gap junction resistance is small enough that a spike in one axon can induce a spike in the coupled axon at short latency (in the model, a resistance of 273 M omega works, with an associated latency of 0.25 ms). We predict that axoaxonal gap junctions, in combination with recurrent excitatory synapses, can induce the occurrence of high-frequency population spikes superimposed on epileptiform field potentials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of the GABA(A) receptor antagonists bicuculline and gabazine on stimulus-induced sharp wave-ripple complexes in adult rat hippocampus in vitro.

              Hippocampal sharp wave-ripple-complexes (SPW-Rs) are characterized by slow field potential transients superimposed by ripples with a frequency of approximately 200 Hz. In epileptic humans and rats frequencies of such transient network oscillations can reach up to 500 Hz potentially due to loss of functional inhibition. Therefore, we investigated whether GABA(A) receptor antagonists increased ripple frequency during SPW-Rs. Within area CA3, SPW-Rs were induced by repeated stimulation of stratum radiatum in area CA1 of adult Wistar rat hippocampal slices. Intracellular recordings showed that in approximately 50% of recorded CA3 pyramidal cells SPW-Rs were accompanied by compound excitatory postsynaptic potentials (EPSPs) of approximately 10 mV superimposed by up to four action potentials (APs). The remaining cells responded with a compound inhibitory postsynaptic potential (IPSP) during SPW-Rs. The GABA(A) receptor antagonists bicuculline (BMI) or gabazine (SR-95531) led to a transition of SPW-Rs into prolonged bursts with a significant increase in amplitude and duration reminiscent of recurrent epileptiform discharges (REDs). Ripple frequencies increased from approximately 190 Hz to approximately 300 Hz. In naïve slices SR-95531 and BMI also evoked REDs with similar incidence and high frequency ripple frequencies of approximately 240 Hz. Elevations in extracellular potassium concentration during REDs were approximately 20-fold higher than those observed during SPW-Rs. Intracellular recordings revealed bursts that were characterized by a large (> 25 mV) prolonged depolarization superimposed by up to 40 APs in close synchrony with extracellularly recorded ripples. Our results suggest that the generation of high frequency ripples, which are also observed in epileptic humans and rats, could indicate a loss of functional inhibition.
                Bookmark

                Author and article information

                Contributors
                Conference
                BMC Neurosci
                BMC Neurosci
                BMC Neuroscience
                BioMed Central
                1471-2202
                2013
                8 July 2013
                : 14
                : Suppl 1
                : P208
                Affiliations
                [1 ]Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
                [2 ]Institute for Theoretical Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
                Article
                1471-2202-14-S1-P208
                10.1186/1471-2202-14-S1-P208
                3704508
                36b47a17-2426-4533-b165-397bc23f5960
                Copyright © 2013 Donoso et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Twenty Second Annual Computational Neuroscience Meeting: CNS*2013
                Paris, France
                13-18 July 2013
                History
                Categories
                Poster Presentation

                Neurosciences
                Neurosciences

                Comments

                Comment on this article