18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phloroglucinol suppresses metastatic ability of breast cancer cells by inhibition of epithelial-mesenchymal cell transition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metastasis is a challenging clinical problem and the primary cause of death in breast cancer patients. However, there is no therapeutic agent against metastasis of breast cancer cells. Here we report that phloroglucinol, a natural phlorotannin component of brown algae suppresses metastatic ability of breast cancer cells. Treatment with phloroglucinol effectively inhibited mesenchymal phenotypes of basal type breast cancer cells through downregulation of SLUG without causing a cytotoxic effect. Importantly, phloroglucinol decreased SLUG through inhibition of PI3K/AKT and RAS/RAF-1/ERK signaling. In agreement with in vitro data, phloroglucinol was also effective against in vivo metastasis of breast cancer cells, drastically suppressing their metastatic ability to lungs, and extending the survival time of mice. Collectively, our findings demonstrate a novel anticancer activity of phloroglucinol against metastasis of breast cancer cells, implicating its clinical relevance.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor metastasis: molecular insights and evolving paradigms.

          Metastases represent the end products of a multistep cell-biological process termed the invasion-metastasis cascade, which involves dissemination of cancer cells to anatomically distant organ sites and their subsequent adaptation to foreign tissue microenvironments. Each of these events is driven by the acquisition of genetic and/or epigenetic alterations within tumor cells and the co-option of nonneoplastic stromal cells, which together endow incipient metastatic cells with traits needed to generate macroscopic metastases. Recent advances provide provocative insights into these cell-biological and molecular changes, which have implications regarding the steps of the invasion-metastasis cascade that appear amenable to therapeutic targeting. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype.

            Epithelial-mesenchymal transition (EMT) is defined by the loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. In carcinoma cells, EMT can be associated with increased aggressiveness, and invasive and metastatic potential. To assess the occurrence of EMT in human breast tumors, we conducted a tissue microarray-based immunohistochemical study in 479 invasive breast carcinomas and 12 carcinosarcomas using 28 different markers. Unsupervised hierarchical clustering of the tumors and statistical analysis showed that up-regulation of EMT markers (vimentin, smooth-muscle-actin, N-cadherin, and cadherin-11) and overexpression of proteins involved in extracellular matrix remodeling and invasion (SPARC, laminin, and fascin), together with reduction of characteristic epithelial markers (E-cadherin and cytokeratins), preferentially occur in breast tumors with the "basal-like phenotype." Moreover, most breast carcinosarcomas also had a basal-like phenotype and showed expression of mesenchymal markers in their sarcomatous and epithelial components. To assess whether basal-like cells have intrinsic phenotypic plasticity for mesenchymal transition, we performed in vitro studies with the MCF10A cell line. In response to low cell density, MCF10A cells suffer spontaneous morphologic and phenotypic EMT-like changes, including cytoskeleton reorganization, vimentin and Slug up-regulation, cadherin switching, and diffuse cytosolic relocalization of the catenins. Moreover, these phenotypic changes are associated with modifications in the global genetic differentiation program characteristic of the EMT process. In summary, our data indicate that in breast tumors, EMT likely occurs within a specific genetic context, the basal phenotype, and suggests that this proclivity to mesenchymal transition may be related to the high aggressiveness and the characteristic metastatic spread of these tumors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epithelial-Mesenchymal Transition in Cancer: Parallels Between Normal Development and Tumor Progression

              From the earliest stages of embryonic development, cells of epithelial and mesenchymal origin contribute to the structure and function of developing organs. However, these phenotypes are not always permanent, and instead, under the appropriate conditions, epithelial and mesenchymal cells convert between these two phenotypes. These processes, termed Epithelial-Mesenchymal Transition (EMT), or the reverse Mesenchymal-Epithelial Transition (MET), are required for complex body patterning and morphogenesis. In addition, epithelial plasticity and the acquisition of invasive properties without the full commitment to a mesenchymal phenotype are critical in development, particularly during branching morphogenesis in the mammary gland. Recent work in cancer has identified an analogous plasticity of cellular phenotypes whereby epithelial cancer cells acquire mesenchymal features that permit escape from the primary tumor. Because local invasion is thought to be a necessary first step in metastatic dissemination, EMT and epithelial plasticity are hypothesized to contribute to tumor progression. Similarities between developmental and oncogenic EMT have led to the identification of common contributing pathways, suggesting that the reactivation of developmental pathways in breast and other cancers contributes to tumor progression. For example, developmental EMT regulators including Snail/Slug, Twist, Six1, and Cripto, along with developmental signaling pathways including TGF-β and Wnt/β-catenin, are misexpressed in breast cancer and correlate with poor clinical outcomes. This review focuses on the parallels between epithelial plasticity/EMT in the mammary gland and other organs during development, and on a selection of developmental EMT regulators that are misexpressed specifically during breast cancer.
                Bookmark

                Author and article information

                Journal
                Cancer Sci
                Cancer Sci
                cas
                Cancer Science
                BlackWell Publishing Ltd (Oxford, UK )
                1347-9032
                1349-7006
                January 2015
                03 December 2014
                : 106
                : 1
                : 94-101
                Affiliations
                [1 ]Department of Life Science, Research Institute for Natural Sciences, Hanyang University Seoul, South Korea
                [2 ]Department of Pharmacology and Clinical Pharmacology Lab, College of Medicine, Division of Molecular Therapeutics Development, Hanyang Biomedical Research Institute, Hanyang University Seoul, South Korea
                [3 ]Laboratory of Radiation Exposure and Therapeutics, National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences Seoul, South Korea
                [4 ]Division of Hematology/Oncology, Department of Internal Medicine, Hanyang University Seoul, South Korea
                Author notes
                Correspondence Su-Jae Lee, Laboratory of Molecular Biochemistry, Department of Life Science, Hanyang University, 17 Haengdang-Dong, Seongdong-Ku, Seoul 133-791, Korea., Tel: +82-2-2220-2557; Fax: +82-2-2299-0762;, E-mail: sj0420@ 123456hanyang.ac.kr
                [5]

                These authors contributed equally to this work.

                Funding InformationThis work was supported by the National Research Foundation (NRF) and Ministry of Science, ICT and Future Planning, Korean government, through its National Nuclear Technology Program (NRF-2012M2B2B1055639); and Converging Research Center Program Grant (2013K000283).

                Article
                10.1111/cas.12562
                4317783
                25456733
                36b605ee-6b5f-4a39-b408-ac0c39d9dfe7
                © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

                This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 19 July 2014
                : 09 October 2014
                : 20 October 2014
                Categories
                Original Articles

                Oncology & Radiotherapy
                basal type breast cancer cells,cancer metastasis,epithelial-mesenchymal transition,phloroglucinol,slug

                Comments

                Comment on this article