20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      AtDOF5.4/OBP4, a DOF Transcription Factor Gene that Negatively Regulates Cell Cycle Progression and Cell Expansion in Arabidopsis thaliana

      research-article
      1 , 1 , 1 , a , 1
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In contrast to animals, plant development involves continuous organ formation, which requires strict regulation of cell proliferation. The core cell cycle machinery is conserved across plants and animals, but plants have developed new mechanisms that precisely regulate cell proliferation in response to internal and external stimuli. Here, we report that the DOF transcription factor OBP4 negatively regulates cell proliferation and expansion. OBP4 is a nuclear protein. Constitutive and inducible overexpression of OBP4 reduced the cell size and number, resulting in dwarf plants. Inducible overexpression of OBP4 in Arabidopsis also promoted early endocycle onset and inhibited cell expansion, while inducible overexpression of OBP4 fused to the VP16 activation domain in Arabidopsis delayed endocycle onset and promoted plant growth. Furthermore, gene expression analysis showed that cell cycle regulators and cell wall expansion factors were largely down-regulated in the OBP4 overexpression lines. Short-term inducible analysis coupled with in vivo ChIP assays indicated that OBP4 targets the CyclinB1;1, CDKB1;1 and XTH genes. These results strongly suggest that OBP4 is a negative regulator of cell cycle progression and cell growth. These findings increase our understanding of the transcriptional regulation of the cell cycle in plants.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          The Dof family of plant transcription factors.

          Dof proteins are members of a major family of plant transcription factors. The proteins have similar DNA-binding properties because of the highly conserved DNA-binding domain. However, recent studies are disclosing their diverse roles in gene expression when associated with plant-specific phenomena including light, phytohormone and defense responses, seed development and germination. Based on the structural diversity indicated by the complete catalog of Arabidopsis Dof proteins, Dof genes appear to have evolved multiple times, preceding and paralleling the diversification of angiosperms. Such gene multiplication might have led to the functional diversification of Dof proteins proceeding differently in distinct plant species.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A membrane-bound NAC transcription factor regulates cell division in Arabidopsis.

            Controlled release of membrane-tethered, dormant precursors is an intriguing activation mechanism that regulates diverse cellular functions in eukaryotes. An exquisite example is the proteolytic activation of membrane-bound transcription factors. The proteolytic cleavage liberates active transcription factors from the membranes that can enter the nucleus and evokes rapid transcriptional responses to incoming stimuli. Here, we show that a membrane-bound NAC (for NAM, ATAF1/2, CUC2) transcription factor, designated NTM1 (for NAC with transmembrane motif1), is activated by proteolytic cleavage through regulated intramembrane proteolysis and mediates cytokinin signaling during cell division in Arabidopsis thaliana. Cell proliferation was greatly reduced in an Arabidopsis mutant with retarded growth and serrated leaves in which a transcriptionally active NTM1 form was constitutively expressed. Accordingly, a subset of cyclin-dependent kinase (CDK) inhibitor genes (the KIP-related proteins) was induced in this mutant with a significant reduction in histone H4 gene expression and in CDK activity. Consistent with a role for NTM1 in cell cycling, a Ds element insertional mutant was morphologically normal but displayed enhanced hypocotyl growth with accelerated cell division. Interestingly, cytokinins were found to regulate NTM1 activity by controlling its stability. These results indicate that the membrane-mediated activation of NTM1 defines a molecular mechanism by which cytokinin signaling is tightly regulated during cell cycling.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants.

              Dof (DNA-binding with one finger) domain proteins are plant-specific transcription factors with a highly conserved DNA-binding domain, which presumably includes a single C(2)-C(2) zinc finger. During the past decade, numerous Dof domain proteins have been identified in both monocots and dicots including maize, barley, wheat, rice, tobacco, Arabidopsis, pumpkin, potato, and pea. Biochemical, molecular biological and molecular genetic analyses revealed that Dof domain proteins function as a transcriptional activator or a repressor involved in diverse plant-specific biological processes. Although more physiological roles of Dof domain proteins would be elucidated in future because of numerous Dof domain proteins in plants, it is already evident that the Dof domain proteins play critical roles as transcriptional regulators in plant growth and development. Here I summarize our current knowledge about Dof domain proteins.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                14 June 2016
                2016
                : 6
                : 27705
                Affiliations
                [1 ]Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , 300 Fenglin Rd, Shanghai 200032, China
                Author notes
                Article
                srep27705
                10.1038/srep27705
                4906354
                27297966
                36c1e45a-1113-483e-b82e-68268da89ff1
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 25 February 2016
                : 24 May 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article