Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

Recent advances in the computational chemistry of soft porous crystals

Preprint

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Here we highlight recent progress in the field of computational chemistry of nanoporous materials, focusing on methods and studies that address the extraordinary dynamic nature of these systems: the high flexibility of their frameworks, the large-scale structural changes upon external physical or chemical stimulation, and the presence of defects and disorder. The wide variety of behavior demonstrated in soft porous crystals, including the topical class of metal-organic frameworks, opens new challenges for computational chemistry methods at all scales.

      Related collections

      Most cited references 8

      • Record: found
      • Abstract: found
      • Article: not found

      Porous organic molecules.

      Most synthetic materials that show molecular-scale porosity consist of one-, two- or three-dimensional networks. Porous metal-organic frameworks in particular have attracted a lot of recent attention. By contrast, discrete molecules tend to pack efficiently in the solid state, leaving as little empty space as possible, which leads to non-porous materials. This Perspective discusses recent developments with discrete organic molecules that are porous in the solid state. Such molecules, which may be either crystalline or amorphous, can be categorized as either intrinsically porous (containing permanent covalent cavities) or extrinsically porous (inefficiently packed). We focus on the possible advantages of organic molecules over inorganic or hybrid systems in terms of molecular solubility, choice of components and functionalities, and structural mobility and responsiveness in non-covalent extended solids. We also highlight the potential for 'undiscovered' porous systems among the large number of cage-like organic molecules that are already known.
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Active site engineering in UiO-66 type metal–organic frameworks by intentional creation of defects: a theoretical rationalization

        The catalytic activity of the Zr-benzenedicarboxylate (Zr-BDC) UiO-66 increases by using synthesis modulators as trifluoroacetate (TFA) or hydrochloric acid (HCl), which can be removed post-synthetically. The catalytic activity of the Zr-benzenedicarboxylate (Zr-BDC) UiO-66 can be drastically increased if some BDC linkers are missing, as this removes the full coordination of the framework metal ions. As a result, metal centers become more accessible and thus more active for Lewis acid catalysed reactions. Addition of modulators (MDL) to the synthesis mixture can create more linker deficiencies (Vermoortele et al. , J. Am. Chem. Soc. , 2013, 135 , 11465) and leads to a significant increase in the catalytic activity due to the creation of a larger number of open sites. In this paper, we rationalize the function of the modulators under real synthesis conditions by the construction of free energy diagrams. The UiO-66 type materials form a very appropriate test case as the effect of addition of modulators hydrochloric acid (HCl) and trifluoroacetate (TFA) has been intensively investigated experimentally for the synthesis process and post-synthetic thermal activation. Under synthesis conditions, direct removal of BDC linkers requires a high free energy, but replacement of such linker by one or more TFA species might occur especially at high TFA : BDC ratios in the reaction mixture. Post-synthesis activation procedures at higher temperatures lead to substantial removal of the species coordinated to the Zr bricks, creating open metal sites. A mechanistic pathway is presented for the dehydroxylation process of the hexanuclear Zr cluster. For the citronellal cyclization, we show that the presence of some residual TFA in the structure may lead to faster reactions in complete agreement with the experiment. Hirshfeld-e partial charges for the Zr ions have been computed to investigate their sensitivity to substituent effects; a strong correlation with the experimental Hammett parameters and with the rates of the citronellal cyclization is found. The theoretical rationalization may serve as a basis for detailed active site engineering studies.
          Bookmark
          • Record: found
          • Abstract: not found
          • Article: not found

          MOF-FF - A flexible first-principles derived force field for metal-organic frameworks

            Bookmark

            Author and article information

            Journal
            28 June 2018
            1806.11017
            10.1039/c7cc03306k

            http://arxiv.org/licenses/nonexclusive-distrib/1.0/

            Custom metadata
            Chemical Communications, 2017, 53, 7211-7221
            physics.chem-ph cond-mat.mtrl-sci

            Condensed matter, Physical chemistry

            Comments

            Comment on this article