12
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Early Palaeogene planktic foraminiferal and carbon isotope stratigraphy, Hole 762C, Exmouth Plateau, northwest Australian margin

      , , ,
      Journal of Micropalaeontology
      Geological Society of London

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. Although the northwest margin of Australia is an important region for petroleum exploration and palaeoceanographic investigations, its Palaeogene stratigraphy is poorly documented, especially in terms of a foraminiferal biozonation. Early Palaeogene cores from 502.96 to 307.80 m below sea floor at Ocean Drilling Program Site 762 on the Exmouth Plateau were examined in this study for their planktic foraminiferal assemblages and the carbon isotopic compositions of Subbotina spp. Planktic foraminifera are generally well preserved and belong to 74 species and 17 genera. In spite of a mid-latitudinal palaeolatitude (c. 40°S) the sequence, deposited between the early Paleocene and Middle Eocene, contains all planktic foraminiferal Zones P1c through P10 of the current global scheme for tropical locations, except for Subzone P4b. Most zones are well defined by the datums of primary marker species except P3a and P9, which have boundaries that probably occur in core gaps, and the P9 zonal boundaries are defined by secondary marker species. Overall, variations in δ13C based on sequential samples of Subbotina are similar in pattern and magnitude to global summary isotope curves spanning the early Palaeogene. However, the prominent δ13C excursion that characterizes the Palaeocene/Eocene transition is mostly missing and appears to lie in a core gap. The planktic foraminiferal zonation, linked with that based on nannofossils, a recalibrated magnetostratigraphy and carbon isotope records, provides a robust temporal framework for the Early Palaeogene of the northwest margin of Australia.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Trends, rhythms, and aberrations in global climate 65 Ma to present.

          Since 65 million years ago (Ma), Earth's climate has undergone a significant and complex evolution, the finer details of which are now coming to light through investigations of deep-sea sediment cores. This evolution includes gradual trends of warming and cooling driven by tectonic processes on time scales of 10(5) to 10(7) years, rhythmic or periodic cycles driven by orbital processes with 10(4)- to 10(6)-year cyclicity, and rare rapid aberrant shifts and extreme climate transients with durations of 10(3) to 10(5) years. Here, recent progress in defining the evolution of global climate over the Cenozoic Era is reviewed. We focus primarily on the periodic and anomalous components of variability over the early portion of this era, as constrained by the latest generation of deep-sea isotope records. We also consider how this improved perspective has led to the recognition of previously unforeseen mechanisms for altering climate.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chronology of fluctuating sea levels since the triassic.

            Advances in sequence stratigraphy and the development of depositional models have helped explain the origin of genetically related sedimentary packages during sea level cycles. These concepts have provided the basis for the recognition of sea level events in subsurface data and in outcrops of marine sediments around the world. Knowledge of these events has led to a new generation of Mesozoic and Cenozoic global cycle charts that chronicle the history of sea level fluctuations during the past 250 million years in greater detail than was possible from seismic-stratigraphic data alone. An effort has been made to develop a realistic and accurate time scale and widely applicable chronostratigraphy and to integrate depositional sequences documented in public domain outcrop sections from various basins with this chronostratigraphic framework. A description of this approach and an account of the results, illustrated by sea level cycle charts of the Cenozoic, Cretaceous, Jurassic, and Triassic intervals, are presented.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene

                Bookmark

                Author and article information

                Journal
                Journal of Micropalaeontology
                J. Micropalaeontol.
                Geological Society of London
                2041-4978
                2002
                May 01 2002
                : 21
                : 1
                : 29-42
                Article
                10.1144/jm.21.1.29
                36e3dafc-d460-481a-9739-0dc84ec9fdbd
                © 2002

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article