89
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effects of Vegetarian and Vegan Diets on Gut Microbiota

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The difference in gut microbiota composition between individuals following vegan or vegetarian diets and those following omnivorous diets is well documented. A plant-based diet appears to be beneficial for human health by promoting the development of more diverse and stable microbial systems. Additionally, vegans and vegetarians have significantly higher counts of certain Bacteroidetes-related operational taxonomic units compared to omnivores. Fibers (that is, non-digestible carbohydrates, found exclusively in plants) most consistently increase lactic acid bacteria, such as Ruminococcus, E. rectale, and Roseburia, and reduce Clostridium and Enterococcus species. Polyphenols, also abundant in plant foods, increase Bifidobacterium and Lactobacillus, which provide anti-pathogenic and anti-inflammatory effects and cardiovascular protection. High fiber intake also encourages the growth of species that ferment fiber into metabolites as short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate. The positive health effects of SCFAs are myriad, including improved immunity against pathogens, blood–brain barrier integrity, provision of energy substrates, and regulation of critical functions of the intestine. In conclusion, the available literature suggests that a vegetarian/vegan diet is effective in promoting a diverse ecosystem of beneficial bacteria to support both human gut microbiome and overall health. This review will focus on effects of different diets and nutrient contents, particularly plant-based diets, on the gut microbiota composition and production of microbial metabolites affecting the host health.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          Diet rapidly and reproducibly alters the human gut microbiome

          Long-term diet influences the structure and activity of the trillions of microorganisms residing in the human gut 1–5 , but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here, we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila, and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale, and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals 2 , reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi, and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids, and the outgrowth of microorganisms capable of triggering inflammatory bowel disease 6 . In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            A human gut microbial gene catalogue established by metagenomic sequencing.

            To understand the impact of gut microbes on human health and well-being it is crucial to assess their genetic potential. Here we describe the Illumina-based metagenomic sequencing, assembly and characterization of 3.3 million non-redundant microbial genes, derived from 576.7 gigabases of sequence, from faecal samples of 124 European individuals. The gene set, approximately 150 times larger than the human gene complement, contains an overwhelming majority of the prevalent (more frequent) microbial genes of the cohort and probably includes a large proportion of the prevalent human intestinal microbial genes. The genes are largely shared among individuals of the cohort. Over 99% of the genes are bacterial, indicating that the entire cohort harbours between 1,000 and 1,150 prevalent bacterial species and each individual at least 160 such species, which are also largely shared. We define and describe the minimal gut metagenome and the minimal gut bacterial genome in terms of functions present in all individuals and most bacteria, respectively.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites.

              A compelling set of links between the composition of the gut microbiota, the host diet, and host physiology has emerged. Do these links reflect cause-and-effect relationships, and what might be their mechanistic basis? A growing body of work implicates microbially produced metabolites as crucial executors of diet-based microbial influence on the host. Here, we will review data supporting the diverse functional roles carried out by a major class of bacterial metabolites, the short-chain fatty acids (SCFAs). SCFAs can directly activate G-coupled-receptors, inhibit histone deacetylases, and serve as energy substrates. They thus affect various physiological processes and may contribute to health and disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Nutr
                Front Nutr
                Front. Nutr.
                Frontiers in Nutrition
                Frontiers Media S.A.
                2296-861X
                17 April 2019
                2019
                : 6
                : 47
                Affiliations
                [1] 1Faculty of Medicine, Institute of Physiology, Comenius University in Bratislava , Bratislava, Slovakia
                [2] 2Center for Clinical Nutrition , Bratislava, Slovakia
                [3] 3Physicians Committee for Responsible Medicine , Washington, DC, United States
                [4] 4Adjunct Faculty, George Washington University School of Medicine and Health Sciences , Washington, DC, United States
                Author notes

                Edited by: Sergueï O. Fetissov, Université de Rouen, France

                Reviewed by: Iolanda Cioffi, Azienda Ospedaliera Universitaria Federico II, Italy; Christine Ann Butts, The New Zealand Institute for Plant & Food Research Ltd, New Zealand

                *Correspondence: Aleksandra Tomova aleksandra.tomova@ 123456fmed.uniba.sk

                This article was submitted to Clinical Nutrition, a section of the journal Frontiers in Nutrition

                Article
                10.3389/fnut.2019.00047
                6478664
                31058160
                36e6488d-13a3-487a-8722-9cf502f63126
                Copyright © 2019 Tomova, Bukovsky, Rembert, Yonas, Alwarith, Barnard and Kahleova.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 January 2019
                : 29 March 2019
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 103, Pages: 10, Words: 9282
                Categories
                Nutrition
                Review

                gut microbiota,fiber,nutrition,plant-based diet,postbiotics
                gut microbiota, fiber, nutrition, plant-based diet, postbiotics

                Comments

                Comment on this article