16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Functional Dorsoventral Symmetry in Relation to Lift-Based Swimming in the Ocean Sunfish Mola mola

      research-article
      1 , 2 , * , 1
      PLoS ONE
      Public Library of Science

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The largest (up to 2 tons) and a globally distributed teleost—the ocean sunfish Mola mola—is commonly regarded as a planktonic fish because of its unusual shape including absence of caudal fin. This common view was recently questioned because the horizontal movements of the ocean sunfish tracked by acoustic telemetry were independent of ocean currents. However, direct information regarding their locomotor performance under natural conditions is still lacking. By using multi-sensor tags, we show that sunfish indeed swam continuously with frequent vertical movements at speeds of 0.4–0.7 m s –1, which is similar to the records of other large fishes such as salmons, marlins, and pelagic sharks. The acceleration data revealed that they stroked their dorsal and anal fins synchronously (dominant frequency, 0.3–0.6 Hz) to generate a lift-based thrust, as penguins do using two symmetrical flippers. Morphological studies of sunfish (mass, 2–959 kg) showed that the dorsal and anal fins had similar external (symmetrical shape and identical area) and internal (identical locomotory muscle mass) features; however, the muscle shape differed markedly. We conclude that ocean sunfish have functional dorsoventral symmetry with regards to the non-homologous dorsal and anal fins that act as a pair of vertical hydrofoils. Although sunfish lack a swimbladder, we found that they are neutrally buoyant independent of depth because of their subcutaneous gelatinous tissue that has low density and is incompressible. Efficient lift-based swimming in conjunction with neutral buoyancy enables sunfish to travel long distances both horizontally and vertically.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Book: not found

          Biostatistical Analysis

          Designed for one/two-semester, junior/graduate-level courses in Biostatistics, Biometry, Quantitative Biology, or Statistics, the latest edition of this best-selling biostatistics text is both comprehensive and easy to read. It provides a broad and practical overview of the statistical analysis methods used by researchers to collect, summarize, analyze, and draw conclusions from biological research data. The Fourth Edition can serve as either an introduction to the discipline for beginning students or a comprehensive procedural reference for today's practitioners.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book: not found

            Principles of Animal Locomotion

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Factors affecting stroking patterns and body angle in diving Weddell seals under natural conditions.

              Aquatic animals use a variety of strategies to reduce the energetic cost of locomotion. Efficient locomotion is particularly important for breath-holding divers because high levels of exercise may quickly deplete oxygen reserves, leading to the termination of a dive. We investigated the swimming behavior of eight adult Weddell seals, which are proficient divers, in McMurdo Sound, Antarctica. A newly developed data logger was attached to free-ranging females at their own breeding sites to record swimming speed, depth, two-dimensional accelerations (stroke frequency and body angle) and temperature. All seals conducted multiple deep dives (the mean dive depth range for each animal was 223.3+/-66.5-297.9+/-164.7 m). Prolonged gliding while descending was observed with thinner females (N=5 seals). But the fatter females (N=3 seals) exhibited only swim-and-glide swimming, characterized by intermittent stroking and fluctuating swim speed, throughout their descent and ascent. The body angles of four of the seals were restricted to less than 30 degrees by the location of breathing holes in the ice and the slope of local bathymetric features. Of these four, the three fatter seals adopted the stroke-and-glide method while the other thinner seal descended with prolonged periods of gliding. Prolonged gliding seems to be a more efficient method for locomotion because the surface time between dives of gliding seals was significantly less than that of stroking animals, despite their same stroke frequencies.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2008
                22 October 2008
                : 3
                : 10
                : e3446
                Affiliations
                [1 ]International Coastal Research Center, Ocean Research Institute, The University of Tokyo, Otsuchi, Iwate, Japan
                [2 ]National Institute of Polar Research, Itabashi, Tokyo, Japan
                University of Sheffield, United Kingdom
                Author notes

                Conceived and designed the experiments: YW KS. Performed the experiments: YW KS. Analyzed the data: YW KS. Contributed reagents/materials/analysis tools: YW KS. Wrote the paper: YW.

                Article
                08-PONE-RA-05638R1
                10.1371/journal.pone.0003446
                2562982
                18941510
                36e807aa-88f2-4c8a-a017-ada627d68217
                Watanabe et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 July 2008
                : 12 September 2008
                Page count
                Pages: 7
                Categories
                Research Article
                Ecology/Behavioral Ecology
                Ecology/Marine and Freshwater Ecology
                Ecology/Physiological Ecology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article