29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lunar laser ranging: the millimeter challenge

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lunar laser ranging has provided many of the best tests of gravitation since the first Apollo astronauts landed on the Moon. The march to higher precision continues to this day, now entering the millimeter regime, and promising continued improvement in scientific results. This review introduces key aspects of the technique, details the motivations, observables, and results for a variety of science objectives, summarizes the current state of the art, highlights new developments in the field, describes the modeling challenges, and looks to the future of the enterprise.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Tensor-scalar cosmological models and their relaxation toward general relativity

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Lorentz-Violating Extension of the Standard Model

            In the context of conventional quantum field theory, we present a general Lorentz-violating extension of the minimal SU(3) x SU(2) x U(1) standard model including CPT-even and CPT-odd terms. It can be viewed as the low-energy limit of a physically relevant fundamental theory with Lorentz-covariant dynamics in which spontaneous Lorentz violation occurs. The extension has gauge invariance, energy-momentum conservation, and covariance under observer rotations and boosts, while covariance under particle rotations and boosts is broken. The quantized theory is hermitian and power-counting renormalizable, and other desirable features such as microcausality, positivity of the energy, and the usual anomaly cancellation are expected. Spontaneous symmetry breaking to the electromagnetic U(1) is maintained, although the Higgs expectation is shifted by a small amount relative to its usual value and the \(Z^0\) field acquires a small expectation. A general Lorentz-breaking extension of quantum electrodynamics is extracted from the theory, and some experimental tests are considered. In particular, we study modifications to photon behavior. One possible effect is vacuum birefringence, which could be bounded from cosmological observations by experiments using existing techniques. Radiative corrections to the photon propagator are examined. They are compatible with spontaneous Lorentz and CPT violation in the fermion sector at levels suggested by Planck-scale physics and accessible to other terrestrial laboratory experiments.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lunar laser ranging: a continuing legacy of the apollo program.

              On 21 July 1969, during the first manned lunar mission, Apollo 11, the first retroreflector array was placed on the moon, enabling highly accurate measurements of the Earthmoon separation by means of laser ranging. Lunar laser ranging (LLR) turns the Earthmoon system into a laboratory for a broad range of investigations, including astronomy, lunar science, gravitational physics, geodesy, and geodynamics. Contributions from LLR include the three-orders-of-magnitude improvement in accuracy in the lunar ephemeris, a several-orders-of-magnitude improvement in the measurement of the variations in the moon's rotation, and the verification of the principle of equivalence for massive bodies with unprecedented accuracy. Lunar laser ranging analysis has provided measurements of the Earth's precession, the moon's tidal acceleration, and lunar rotational dissipation. These scientific results, current technological developments, and prospects for the future are discussed here.
                Bookmark

                Author and article information

                Journal
                24 September 2013
                Article
                10.1088/0034-4885/76/7/076901
                1309.6294
                37054e0d-25ee-4b45-b4eb-91847a83b06e

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Reports on Progress in Physics: 76, 076901 (2013)
                45 page review article; 20 figures
                gr-qc astro-ph.IM

                General relativity & Quantum cosmology,Instrumentation & Methods for astrophysics

                Comments

                Comment on this article