68
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multi-pass microscopy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microscopy of biological specimens often requires low light levels to avoid damage. This yields images impaired by shot noise. An improved measurement accuracy at the Heisenberg limit can be achieved exploiting quantum correlations. If sample damage is the limiting resource, an equivalent limit can be reached by passing photons through a specimen multiple times sequentially. Here we use self-imaging cavities and employ a temporal post-selection scheme to present full-field multi-pass polarization and transmission micrographs with variance reductions of 4.4±0.8 dB (11.6±0.8 dB in a lossless setup) and 4.8±0.8 dB, respectively, compared with the single-pass shot-noise limit. If the accuracy is limited by the number of detected probe particles, our measurements show a variance reduction of 25.9±0.9 dB. The contrast enhancement capabilities in imaging and in diffraction studies are demonstrated with nanostructured samples and with embryonic kidney 293T cells. This approach to Heisenberg-limited microscopy does not rely on quantum state engineering.

          Abstract

          Low-damage and high-precision imaging can be achieved by passing the same probe photons through the specimen more than once, and this has been previously achieved in double-pass transmission microscopy. Here, the authors generalize this idea to full-field multi-pass microscopy using a self-imaging cavity.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Observation of Gravitational Waves from a Binary Black Hole Merger

          On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of \(1.0 \times 10^{-21}\). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203 000 years, equivalent to a significance greater than 5.1 {\sigma}. The source lies at a luminosity distance of \(410^{+160}_{-180}\) Mpc corresponding to a redshift \(z = 0.09^{+0.03}_{-0.04}\). In the source frame, the initial black hole masses are \(36^{+5}_{-4} M_\odot\) and \(29^{+4}_{-4} M_\odot\), and the final black hole mass is \(62^{+4}_{-4} M_\odot\), with \(3.0^{+0.5}_{-0.5} M_\odot c^2\) radiated in gravitational waves. All uncertainties define 90% credible intervals.These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quantum-enhanced measurements: beating the standard quantum limit

            , , (2004)
            Quantum mechanics, through the Heisenberg uncertainty principle, imposes limits to the precision of measurement. Conventional measurement techniques typically fail to reach these limits. Conventional bounds to the precision of measurements such as the shot noise limit or the standard quantum limit are not as fundamental as the Heisenberg limits, and can be beaten using quantum strategies that employ `quantum tricks' such as squeezing and entanglement.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Quantum metrology

              , , (2005)
              We point out a general framework that encompasses most cases in which quantum effects enable an increase in precision when estimating a parameter (quantum metrology). The typical quantum precision-enhancement is of the order of the square root of the number of times the system is sampled. We prove that this is optimal and we point out the different strategies (classical and quantum) that permit to attain this bound.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                27 September 2016
                2016
                : 7
                : 12858
                Affiliations
                [1 ]Physics Department, Stanford University , 382 Via Pueblo Mall, Stanford, California 94305, USA
                [2 ]Department of Physics, University of California–Berkeley , 366 Le Conte Hall MS 7300, Berkeley, California 94720, USA
                Author notes
                [*]

                These authors contributed equally to this work

                Author information
                http://orcid.org/0000-0002-7098-5736
                Article
                ncomms12858
                10.1038/ncomms12858
                5052624
                27670525
                370f5a6c-4766-4672-acc2-d9f7e5572de4
                Copyright © 2016, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 14 June 2016
                : 09 August 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article