17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Breastmilk cell trafficking induces microchimerism-mediated immune system maturation in the infant

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Initiating breastfeeding within the first hour of life confers an important benefit in terms of child mortality and severe morbidity. Intestinal permeability to ingested macromolecules and immunoglobulins is limited to the first days of human life. These exchanges cease in the very early post-partum period but may increase beyond the neonatal period in response to local inflammation or introduction of a weaning food. From animal- and limited human-based observations, compelling evidence points out to breastmilk cells also trafficking from mother to infant mucosal tissues and participating to the maternal microchimerism. The precise nature of breastmilk cells that are involved is presently not known but likely includes progenitor/stem cells-representing up to 6% of breastmilk cells-with possible contribution of mature immune cells. Stem cell microchimerism may induce tolerance to non-inherited maternal antigens (NIMAs), breastfeeding generating regulatory T cells (Treg ) that suppress antimaternal immunity. Therefore, in complement to pregnancy-induced microchimerism, breastfeeding-induced microchimerism may be pivotal in infant immune development, intestinal tissue repair/growth and protection against infectious diseases. As a continuum of the gestational period, the neonatal gut may be considered as a temporary, but important developmental extension of the role played by the placenta during intrauterine life; breastmilk playing the role of maternal blood by delivering maternal soluble factors (macromolecules, Ig, cytokines) and immunologically active milk cells. A better understanding of breastfeeding-induced maternal microchimerism would provide further evidence in support of public health messages that reinforce the importance of early initiation of breastfeeding.

          Related collections

          Most cited references99

          • Record: found
          • Abstract: found
          • Article: not found

          Human milk oligosaccharides: every baby needs a sugar mama.

          L Bode (2012)
          Human milk oligosaccharides (HMOs) are a family of structurally diverse unconjugated glycans that are highly abundant in and unique to human milk. Originally, HMOs were discovered as a prebiotic "bifidus factor" that serves as a metabolic substrate for desired bacteria and shapes an intestinal microbiota composition with health benefits for the breast-fed neonate. Today, HMOs are known to be more than just "food for bugs". An accumulating body of evidence suggests that HMOs are antiadhesive antimicrobials that serve as soluble decoy receptors, prevent pathogen attachment to infant mucosal surfaces and lower the risk for viral, bacterial and protozoan parasite infections. In addition, HMOs may modulate epithelial and immune cell responses, reduce excessive mucosal leukocyte infiltration and activation, lower the risk for necrotizing enterocolitis and provide the infant with sialic acid as a potentially essential nutrient for brain development and cognition. Most data, however, stem from in vitro, ex vivo or animal studies and occasionally from association studies in mother-infant cohorts. Powered, randomized and controlled intervention studies will be needed to confirm relevance for human neonates. The first part of this review introduces the pioneers in HMO research, outlines HMO structural diversity and describes what is known about HMO biosynthesis in the mother's mammary gland and their metabolism in the breast-fed infant. The second part highlights the postulated beneficial effects of HMO for the breast-fed neonate, compares HMOs with oligosaccharides in the milk of other mammals and in infant formula and summarizes the current roadblocks and future opportunities for HMO research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of intestinal epithelial permeability by tight junctions.

            The gastrointestinal epithelium forms the boundary between the body and external environment. It effectively provides a selective permeable barrier that limits the permeation of luminal noxious molecules, such as pathogens, toxins, and antigens, while allowing the appropriate absorption of nutrients and water. This selective permeable barrier is achieved by intercellular tight junction (TJ) structures, which regulate paracellular permeability. Disruption of the intestinal TJ barrier, followed by permeation of luminal noxious molecules, induces a perturbation of the mucosal immune system and inflammation, and can act as a trigger for the development of intestinal and systemic diseases. In this context, much effort has been taken to understand the roles of extracellular factors, including cytokines, pathogens, and food factors, for the regulation of the intestinal TJ barrier. Here, I discuss the regulation of the intestinal TJ barrier together with its implications for the pathogenesis of diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero.

              As the immune system develops, T cells are selected or regulated to become tolerant of self antigens and reactive against foreign antigens. In mice, the induction of such tolerance is thought to be attributable to the deletion of self-reactive cells. Here, we show that the human fetal immune system takes advantage of an additional mechanism: the generation of regulatory T cells (Tregs) that suppress fetal immune responses. We find that substantial numbers of maternal cells cross the placenta to reside in fetal lymph nodes, inducing the development of CD4+CD25highFoxP3+ Tregs that suppress fetal antimaternal immunity and persist at least until early adulthood. These findings reveal a form of antigen-specific tolerance in humans, induced in utero and probably active in regulating immune responses after birth.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Pediatric Allergy and Immunology
                Pediatr Allergy Immunol
                Wiley
                09056157
                March 2018
                March 2018
                January 08 2018
                : 29
                : 2
                : 133-143
                Affiliations
                [1 ]Pathogenesis and Control of Chronic Infections; INSERM, EFS; Université de Montpellier; Montpellier France
                [2 ]Department of Bacteriology-Virology and Department of Medical Information; CHU Montpellier; Montpellier France
                [3 ]Department of Paediatrics and Child Health; School of Medicine; University Teaching Hospital; University of Zambia; Lusaka Zambia
                [4 ]Institute for Medical Immunology; Université Libre de Bruxelles; Brussels Belgium
                [5 ]Division of Infectious Diseases & International Health; Department of Medicine; School of Medicine; University of Virginia; Charlottesville VA USA
                Article
                10.1111/pai.12841
                29197124
                37166e24-a311-440e-a6f3-690913440626
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://creativecommons.org/licenses/by-nc/4.0/

                History

                Comments

                Comment on this article