15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence.

      Nature genetics

      Amino Acid Sequence, Animals, Base Sequence, COS Cells, Cloning, Molecular, Codon, Cytosine, DNA, Female, Frameshift Mutation, Genotype, Homeodomain Proteins, genetics, physiology, Humans, Infant, Newborn, Molecular Sequence Data, Pancreas, abnormalities, Pedigree, Point Mutation, Recombinant Fusion Proteins, Sequence Deletion, Trans-Activators

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The homeodomain protein IPF1 (also known as IDX1, STF1 and PDX1; see Methods) is critical for development of the pancreas in mice and is a key factor for the regulation of the insulin gene in the beta-cells of the endocrine pancreas. Targeted disruption of the Ipf1 gene encoding IPF1 in transgenic mice results in a failure of the pancreas to develop (pancreatic agenesis). Here, we report the identification of a single nucleotide deletion within codon 63 of the human IPF1 gene (13q12.1) in a patient with pancreatic agenesis. The patient is homozygous for the point deletion, whereas both parents are heterozygotes for the same mutation. The deletion was not found in 184 chromosomes from normal individuals, indicating that the mutation is unlikely to be a rare polymorphism. The point deletion causes a frame shift at the C-terminal border of the transactivation domain of IPF1 resulting in the translation of 59 novel codons before termination, aminoproximal to the homeodomain essential for DNA binding. Expression of mutant IPF1 in Cos-1 cells confirms the expression of a prematurely terminated truncated protein of 16 kD. Thus, the affected patient should have no functional IPF1 protein. Given the essential role of IPF1 in pancreas development, it is likely that this autosomal recessive mutation is the cause of the pancreatic agenesis phenotype in this patient. Thus, IPF1 appears to be a critical regulator of pancreas development in humans as well as mice.

          Related collections

          Most cited references 19

          • Record: found
          • Abstract: not found
          • Article: not found

          Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription.

             D Ron,  J F Habener (1992)
            We report on the identification of a nuclear protein that serves as a dominant-negative inhibitor of the transcription factors C/EBP and LAP. A 32P-labeled LAP DNA-binding and dimerization domain "zipper probe" was used to isolate a clone that encodes a new C/EBP-homologous protein: CHOP-10. CHOP-10 has strong sequence similarity to C/EBP-like proteins within the bZIP region corresponding to the DNA-binding domain consisting of a leucine zipper and a basic region. Notably, however, CHOP-10 contains 2 prolines substituting for 2 residues in the basic region, critical for binding to DNA. Thus, heterodimers of CHOP-10 and C/EBP-like proteins are unable to bind their cognate DNA enhancer element. CHOP-10 mRNA is expressed in many different rat tissues. Antisera raised against CHOP-10 recognize a nuclear protein with an apparent molecular mass of 29 kD. CHOP-10 is induced upon differentiation of 3T3-L1 fibroblasts to adipocytes, and cytokine-induced dedifferentiation of adipocytes is preceded by the loss of nuclear CHOP-10. Coimmunoprecipitation of CHOP-10 and LAP from transfected COS-1 cells demonstrated a direct interaction between the two proteins, in vivo. Consistent with the structure of its defective basic region, bacterially expressed CHOP-10 inhibits the DNA-binding activity of C/EBP and LAP by forming heterodimers that cannot bind DNA. In transfected HepG2 cells, expression of CHOP-10 attenuates activation of C/EBP- and LAP-driven promoters. We suggest that CHOP-10 is a negative modulator of the activity of C/EBP-like proteins in certain terminally differentiated cells, similar to the regulatory function of Id on the activity of MyoD and MyoD-related proteins important in the development of muscle cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reduction of insulin gene transcription in HIT-T15 beta cells chronically exposed to a supraphysiologic glucose concentration is associated with loss of STF-1 transcription factor expression.

              Chronic exposure of HIT-T15 beta cells to elevated glucose concentrations leads to decreased insulin gene transcription. The reduction in expression is accompanied by diminished binding of a glucose-sensitive transcription factor (termed GSTF) that interacts with two (A+T)-rich elements within the 5' flanking control region of the insulin gene. In this study we examined whether GSTF corresponds to the recently cloned insulin gene transcription factor STF-1, a homeodomain protein whose expression is restricted to the nucleus of endodermal cells of the duodenum and pancreas. We found that an affinity-purified antibody recognizing STF-1 supershifted the GSTF activator complex formed from HIT-T15 extracts. In addition, we demonstrated a reduction in STF-1 mRNA and protein levels that closely correlated with the change in GSTF binding in HIT-T15 cells chronically cultured under supraphysiologic glucose concentrations. The reduction in STF-1 expression in these cells could be accounted for by a change in the rate of STF-1 gene transcription, suggesting a posttranscriptional control mechanism. In support of this hypothesis, no STF-1 mRNA accumulated in HIT-T15 cells passaged in 11.1 mM glucose. The only RNA species detected was a 6.4-kb STF-1 RNA species that hybridized with 5' and 3' STF-1-specific cDNA probes. We suggest that the 6.4-kb RNA represents an STF-1 mRNA precursor and that splicing of this RNA is defective in these cells. Overall, this study suggests that reduced expression of a key transcriptional regulatory factor, STF-1, contributes to the decrease in insulin gene transcription in HIT-T15 cells chronically cultured in supraphysiologic glucose concentration.
                Bookmark

                Author and article information

                Journal
                8988180
                10.1038/ng0197-106

                Comments

                Comment on this article