23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Genome Sequence of the Pathogenic Intestinal Spirochete Brachyspira hyodysenteriae Reveals Adaptations to Its Lifestyle in the Porcine Large Intestine

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brachyspira hyodysenteriae is an anaerobic intestinal spirochete that colonizes the large intestine of pigs and causes swine dysentery, a disease of significant economic importance. The genome sequence of B. hyodysenteriae strain WA1 was determined, making it the first representative of the genus Brachyspira to be sequenced, and the seventeenth spirochete genome to be reported. The genome consisted of a circular 3,000,694 base pair (bp) chromosome, and a 35,940 bp circular plasmid that has not previously been described. The spirochete had 2,122 protein-coding sequences. Of the predicted proteins, more had similarities to proteins of the enteric Escherichia coli and Clostridium species than they did to proteins of other spirochetes. Many of these genes were associated with transport and metabolism, and they may have been gradually acquired through horizontal gene transfer in the environment of the large intestine. A reconstruction of central metabolic pathways identified a complete set of coding sequences for glycolysis, gluconeogenesis, a non-oxidative pentose phosphate pathway, nucleotide metabolism, lipooligosaccharide biosynthesis, and a respiratory electron transport chain. A notable finding was the presence on the plasmid of the genes involved in rhamnose biosynthesis. Potential virulence genes included those for 15 proteases and six hemolysins. Other adaptations to an enteric lifestyle included the presence of large numbers of genes associated with chemotaxis and motility. B. hyodysenteriae has diverged from other spirochetes in the process of accommodating to its habitat in the porcine large intestine.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi.

          The genome of the bacterium Borrelia burgdorferi B31, the aetiologic agent of Lyme disease, contains a linear chromosome of 910,725 base pairs and at least 17 linear and circular plasmids with a combined size of more than 533,000 base pairs. The chromosome contains 853 genes encoding a basic set of proteins for DNA replication, transcription, translation, solute transport and energy metabolism, but, like Mycoplasma genitalium, it contains no genes for cellular biosynthetic reactions. Because B. burgdorferi and M. genitalium are distantly related eubacteria, we suggest that their limited metabolic capacities reflect convergent evolution by gene loss from more metabolically competent progenitors. Of 430 genes on 11 plasmids, most have no known biological function; 39% of plasmid genes are paralogues that form 47 gene families. The biological significance of the multiple plasmid-encoded genes is not clear, although they may be involved in antigenic variation or immune evasion.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            STRING 7—recent developments in the integration and prediction of protein interactions

            Information on protein–protein interactions is still mostly limited to a small number of model organisms, and originates from a wide variety of experimental and computational techniques. The database and online resource STRING generalizes access to protein interaction data, by integrating known and predicted interactions from a variety of sources. The underlying infrastructure includes a consistent body of completely sequenced genomes and exhaustive orthology classifications, based on which interaction evidence is transferred between organisms. Although primarily developed for protein interaction analysis, the resource has also been successfully applied to comparative genomics, phylogenetics and network studies, which are all facilitated by programmatic access to the database backend and the availability of compact download files. As of release 7, STRING has almost doubled to 373 distinct organisms, and contains more than 1.5 million proteins for which associations have been pre-computed. Novel features include AJAX-based web-navigation, inclusion of additional resources such as BioGRID, and detailed protein domain annotation. STRING is available at
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              InterPro and InterProScan: tools for protein sequence classification and comparison.

              Protein sequence classification and comparison has become increasingly important in the current "omics" revolution, where scientists are working on functional genomics and proteomics technologies for large-scale protein function prediction. However, functional classification is also important for the bench scientist wanting to analyze single or small sets of proteins, or even a single genome. A number of tools are available for sequence classification, such as sequence similarity searches, motif- or pattern-finding software, and protein signatures for identifying protein families and domains. One such tool, InterPro, is a documentation resource that integrates the major players in the protein signature field to provide a valuable tool for annotation of proteins. Protein sequences are searched using the InterProScan software to identify signatures from the InterPro member databases; Pfam, PROSITE, PRINTS, ProDom, SMART, TIGRFAMs, PIRSF, SUPERFAMILY, Gene3D, and PANTHER. The InterPro database can be searched to retrieve precalculated matches for UniProtKB proteins, or to find additional information on protein families and domains. For completely sequenced genomes, the user can retrieve InterPro-based analyses on all nonredundant proteins in the proteome, and can execute user-selected proteome comparisons. This chapter will describe how to use InterPro and InterProScan for protein sequence classification and comparative proteomics.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2009
                5 March 2009
                : 4
                : 3
                : e4641
                Affiliations
                [1 ]Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia, Australia
                [2 ]Faculty of Informatics, Mahasarakham University, Mahasarakham, Thailand
                [3 ]Animal Research Institute, School Veterinary and Biomedical Science, Murdoch University, Murdoch, Western Australia, Australia
                University of Hyderabad, India
                Author notes

                Conceived and designed the experiments: MIB TL DJH. Performed the experiments: PW KR PM YM DD. Analyzed the data: MIB PW TL KR PM ZA BS YM DD DS AH RB NP DJH. Contributed reagents/materials/analysis tools: AH. Wrote the paper: MIB PW TL DJH.

                Article
                08-PONE-RA-07879
                10.1371/journal.pone.0004641
                2650404
                19262690
                371ea898-793f-4a54-a304-c4777db91928
                Bellgard et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 22 December 2008
                : 6 January 2009
                Page count
                Pages: 12
                Categories
                Research Article
                Microbiology
                Genetics and Genomics/Genome Projects
                Genetics and Genomics/Microbial Evolution and Genomics
                Microbiology/Microbial Evolution and Genomics

                Uncategorized
                Uncategorized

                Comments

                Comment on this article