5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Impact of anti-glomerular basement membrane antibodies and glomerular neutrophil activation on glomerulonephritis in experimental myeloperoxidase-antineutrophil cytoplasmic antibody vasculitis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antineutrophil cytoplasmic antibody (ANCA) and neutrophil interactions play important roles in ANCA-associated vasculitis (AAV) pathogenesis. However, mechanisms underlying the pathogenesis of crescent formation in ANCA-associated vasculitis have not been completely elucidated. To ascertain the involvement of these interactions in necrotizing crescentic glomerulonephritis (NCGN), we used an AAV rat model and investigated the effects of the anti-myeloperoxidase (MPO) antibody (Ab) titer, tumor necrosis factor α (TNF-α), granulocyte colony-stimulating factor (G-CSF) and subnephritogenic anti-glomerular basement membrane (GBM) Abs, as proinflammatory stimuli.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Netting neutrophils in autoimmune small-vessel vasculitis.

          Small-vessel vasculitis (SVV) is a chronic autoinflammatory condition linked to antineutrophil cytoplasm autoantibodies (ANCAs). Here we show that chromatin fibers, so-called neutrophil extracellular traps (NETs), are released by ANCA-stimulated neutrophils and contain the targeted autoantigens proteinase-3 (PR3) and myeloperoxidase (MPO). Deposition of NETs in inflamed kidneys and circulating MPO-DNA complexes suggest that NET formation triggers vasculitis and promotes the autoimmune response against neutrophil components in individuals with SVV.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The classification of glomerulonephritis in systemic lupus erythematosus revisited.

            The currently used classification reflects our understanding of the pathogenesis of the various forms of lupus nephritis, but clinicopathologic studies have revealed the need for improved categorization and terminology. Based on the 1982 classification published under the auspices of the World Health Organization (WHO) and subsequent clinicopathologic data, we propose that class I and II be used for purely mesangial involvement (I, mesangial immune deposits without mesangial hypercellularity; II, mesangial immune deposits with mesangial hypercellularity); class III for focal glomerulonephritis (involving or =50% of total number of glomeruli) either with segmental (class IV-S) or global (class IV-G) involvement, and also with subdivisions for active and sclerotic lesions; class V for membranous lupus nephritis; and class VI for advanced sclerosing lesions. Combinations of membranous and proliferative glomerulonephritis (i.e., class III and V or class IV and V) should be reported individually in the diagnostic line. The diagnosis should also include entries for any concomitant vascular or tubulointerstitial lesions. One of the main advantages of the current revised classification is that it provides a clear and unequivocal description of the various lesions and classes of lupus nephritis, allowing a better standardization and lending a basis for further clinicopathologic studies. We hope that this revision, which evolved under the auspices of the International Society of Nephrology and the Renal Pathology Society, will contribute to further advancement of the WHO classification.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemokines and chemokine receptors: new insights into cancer-related inflammation.

              Chemokines are involved in cellular interactions and tropism in situations frequently associated with inflammation. Recently, the importance of chemokines and chemokine receptors in inflammation associated with carcinogenesis has been highlighted. Increasing evidence suggests that chemokines are produced by tumor cells as well as by cells of the tumor microenvironment including cancer-associated fibroblasts (CAFs), mesenchymal stem cells (MSCs), endothelial cells, tumor-associated macrophages (TAMs) and more recently tumor-associated neutrophils (TANs). In addition to affecting tumor cell proliferation, angiogenesis and metastasis, chemokines also seem to modulate senescence and cell survival. Here, we review recent progress on the roles of chemokines and chemokine receptors in cancer-related inflammation, and discuss the mechanisms underlying chemokine action in cancer that might facilitate the development of novel therapies in the future. Copyright 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Nephrology Dialysis Transplantation
                Nephrol. Dial. Transplant.
                Oxford University Press (OUP)
                0931-0509
                1460-2385
                March 23 2016
                April 2016
                April 2016
                November 17 2015
                : 31
                : 4
                : 574-585
                Article
                10.1093/ndt/gfv384
                26582929
                371f6800-83af-4260-b3be-e4a02b53460d
                © 2015
                History

                Comments

                Comment on this article