1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Large anomalous Hall effect and anisotropic magnetoresistance in intrinsic nanoscale spin-valve-type structure of an antiferromagnet

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A spin valve is a prototype of spin-based electronic devices found on ferromagnets, in which an antiferromagnet plays a supporting role. Recent findings in antiferromagnetic spintronics show that an antiferromagnetic order in single-phase materials solely governs dynamic transport, and antiferromagnets are considered promising candidates for spintronic technology. In this work, we demonstrated antiferromagnet-based spintronic functionality on an itinerant Ising antiferromagnet of Ca0.9Sr0.1Co2As2 by integrating nanoscale spin-valve-type structure and investigating anisotropic magnetic properties driven by spin-flips. Multiple stacks of 1 nm thick spin-valve-like unit are intrinsically embedded in the antiferromagnetic spin structure. In the presence of a rotating magnetic field, a new type of the spin-valve-like operation was observed for large anomalous Hall conductivity and anisotropic magnetoresistance, whose effects are maximized above the spin-flip transition. In addition, a joint experimental and theoretical study provides an efficient tool to read out various spin states, which scheme can be useful for implementing extensive spintronic applications.

          Related collections

          Author and article information

          Journal
          21 March 2022
          Article
          2203.10952
          3727c50b-5c09-411e-94a0-c7a6c7d73d9f

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          cond-mat.str-el

          Condensed matter
          Condensed matter

          Comments

          Comment on this article