58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gene expression in human brain implicates sexually dimorphic pathways in autism spectrum disorders

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autism spectrum disorder (ASD) is more prevalent in males, and the mechanisms behind this sex-differential risk are not fully understood. Two competing, but not mutually exclusive, hypotheses are that ASD risk genes are sex-differentially regulated, or alternatively, that they interact with characteristic sexually dimorphic pathways. Here we characterized sexually dimorphic gene expression in multiple data sets from neurotypical adult and prenatal human neocortical tissue, and evaluated ASD risk genes for evidence of sex-biased expression. We find no evidence for systematic sex-differential expression of ASD risk genes. Instead, we observe that genes expressed at higher levels in males are significantly enriched for genes upregulated in post-mortem autistic brain, including astrocyte and microglia markers. This suggests that it is not sex-differential regulation of ASD risk genes, but rather naturally occurring sexually dimorphic processes, potentially including neuron–glial interactions, that modulate the impact of risk variants and contribute to the sex-skewed prevalence of ASD.

          Abstract

          Autism spectrum disorder is approximately 4.5 times more likely to occur in boys than girls. Here, Werling, Geschwind and Parikshak characterized sexually dimorphic gene expression in the non-diseased, post-mortem, adult and prenatal human brain, and show genes expressed at higher levels in males are significantly enriched for genes upregulated in autistic brain.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          De novo gene disruptions in children on the autistic spectrum.

          Exome sequencing of 343 families, each with a single child on the autism spectrum and at least one unaffected sibling, reveal de novo small indels and point substitutions, which come mostly from the paternal line in an age-dependent manner. We do not see significantly greater numbers of de novo missense mutations in affected versus unaffected children, but gene-disrupting mutations (nonsense, splice site, and frame shifts) are twice as frequent, 59 to 28. Based on this differential and the number of recurrent and total targets of gene disruption found in our and similar studies, we estimate between 350 and 400 autism susceptibility genes. Many of the disrupted genes in these studies are associated with the fragile X protein, FMRP, reinforcing links between autism and synaptic plasticity. We find FMRP-associated genes are under greater purifying selection than the remainder of genes and suggest they are especially dosage-sensitive targets of cognitive disorders. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Advances in autism genetics: on the threshold of a new neurobiology.

            Autism is a heterogeneous syndrome defined by impairments in three core domains: social interaction, language and range of interests. Recent work has led to the identification of several autism susceptibility genes and an increased appreciation of the contribution of de novo and inherited copy number variation. Promising strategies are also being applied to identify common genetic risk variants. Systems biology approaches, including array-based expression profiling, are poised to provide additional insights into this group of disorders, in which heterogeneity, both genetic and phenotypic, is emerging as a dominant theme.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Different immune cells mediate mechanical pain hypersensitivity in male and female mice.

              A large and rapidly increasing body of evidence indicates that microglia-to-neuron signaling is essential for chronic pain hypersensitivity. Using multiple approaches, we found that microglia are not required for mechanical pain hypersensitivity in female mice; female mice achieved similar levels of pain hypersensitivity using adaptive immune cells, likely T lymphocytes. This sexual dimorphism suggests that male mice cannot be used as proxies for females in pain research.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group
                2041-1723
                19 February 2016
                2016
                : 7
                : 10717
                Affiliations
                [1 ]Center for Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles , Los Angeles, California 90095, USA
                [2 ]Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles , Los Angeles, California 90095, USA
                [3 ]Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles , Los Angeles, California 90095, USA
                [4 ]Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles , Los Angeles, California 90095, USA
                Author notes
                Article
                ncomms10717
                10.1038/ncomms10717
                4762891
                26892004
                373523db-b053-48bb-96fc-19af00d98ab3
                Copyright © 2016, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 20 August 2015
                : 14 January 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article