17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Remyelination Is Correlated with Regulatory T Cell Induction Following Human Embryoid Body-Derived Neural Precursor Cell Transplantation in a Viral Model of Multiple Sclerosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have recently described sustained clinical recovery associated with dampened neuroinflammation and remyelination following transplantation of neural precursor cells (NPCs) derived from human embryonic stem cells (hESCs) in a viral model of the human demyelinating disease multiple sclerosis. The hNPCs used in that study were derived by a novel direct differentiation method (direct differentiation, DD-NPCs) that resulted in a unique gene expression pattern when compared to hNPCs derived by conventional methods. Since the therapeutic potential of human NPCs may differ greatly depending on the method of derivation and culture, we wanted to determine whether NPCs differentiated using conventional methods would be similarly effective in improving clinical outcome under neuroinflammatory demyelinating conditions. For the current study, we utilized hNPCs differentiated from a human induced pluripotent cell line via an embryoid body intermediate stage (EB-NPCs). Intraspinal transplantation of EB-NPCs into mice infected with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in decreased accumulation of CD4+ T cells in the central nervous system that was concomitant with reduced demyelination at the site of injection. Dampened neuroinflammation and remyelination was correlated with a transient increase in CD4+FOXP3+ regulatory T cells (Tregs) concentrated within the peripheral lymphatics. However, compared to our earlier study, pathological improvements were modest and did not result in significant clinical recovery. We conclude that the genetic signature of NPCs is critical to their effectiveness in this model of viral-induced neurologic disease. These comparisons will be useful for understanding what factors are critical for the sustained clinical improvement.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice.

          We report that prospectively isolated, human CNS stem cells grown as neurospheres (hCNS-SCns) survive, migrate, and express differentiation markers for neurons and oligodendrocytes after long-term engraftment in spinal cord-injured NOD-scid mice. hCNS-SCns engraftment was associated with locomotor recovery, an observation that was abolished by selective ablation of engrafted cells by diphtheria toxin. Remyelination by hCNS-SCns was found in both the spinal cord injury NOD-scid model and myelin-deficient shiverer mice. Moreover, electron microscopic evidence consistent with synapse formation between hCNS-SCns and mouse host neurons was observed. Glial fibrillary acidic protein-positive astrocytic differentiation was rare, and hCNS-SCns did not appear to contribute to the scar. These data suggest that hCNS-SCns may possess therapeutic potential for CNS injury and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis.

            Widespread demyelination and axonal loss are the pathological hallmarks of multiple sclerosis. The multifocal nature of this chronic inflammatory disease of the central nervous system complicates cellular therapy and puts emphasis on both the donor cell origin and the route of cell transplantation. We established syngenic adult neural stem cell cultures and injected them into an animal model of multiple sclerosis--experimental autoimmune encephalomyelitis (EAE) in the mouse--either intravenously or intracerebroventricularly. In both cases, significant numbers of donor cells entered into demyelinating areas of the central nervous system and differentiated into mature brain cells. Within these areas, oligodendrocyte progenitors markedly increased, with many of them being of donor origin and actively remyelinating axons. Furthermore, a significant reduction of astrogliosis and a marked decrease in the extent of demyelination and axonal loss were observed in transplanted animals. The functional impairment caused by EAE was almost abolished in transplanted mice, both clinically and neurophysiologically. Thus, adult neural precursor cells promote multifocal remyelination and functional recovery after intravenous or intrathecal injection in a chronic model of multiple sclerosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulatory networks define phenotypic classes of human stem cell lines.

              Stem cells are defined as self-renewing cell populations that can differentiate into multiple distinct cell types. However, hundreds of different human cell lines from embryonic, fetal and adult sources have been called stem cells, even though they range from pluripotent cells-typified by embryonic stem cells, which are capable of virtually unlimited proliferation and differentiation-to adult stem cell lines, which can generate a far more limited repertoire of differentiated cell types. The rapid increase in reports of new sources of stem cells and their anticipated value to regenerative medicine has highlighted the need for a general, reproducible method for classification of these cells. We report here the creation and analysis of a database of global gene expression profiles (which we call the 'stem cell matrix') that enables the classification of cultured human stem cells in the context of a wide variety of pluripotent, multipotent and differentiated cell types. Using an unsupervised clustering method to categorize a collection of approximately 150 cell samples, we discovered that pluripotent stem cell lines group together, whereas other cell types, including brain-derived neural stem cell lines, are very diverse. Using further bioinformatic analysis we uncovered a protein-protein network (PluriNet) that is shared by the pluripotent cells (embryonic stem cells, embryonal carcinomas and induced pluripotent cells). Analysis of published data showed that the PluriNet seems to be a common characteristic of pluripotent cells, including mouse embryonic stem and induced pluripotent cells and human oocytes. Our results offer a new strategy for classifying stem cells and support the idea that pluripotency and self-renewal are under tight control by specific molecular networks.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                16 June 2016
                2016
                : 11
                : 6
                : e0157620
                Affiliations
                [1 ]Department of Molecular Biology & Biochemistry, Sue and Bill Gross Stem Cell Center, Multiple Sclerosis Research Center, Institute for Immunology, University of California Irvine, Irvine, California, United States of America
                [2 ]Center for Regenerative Medicine, Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
                [3 ]Department of Pathology, University of Utah, School of Medicine, Salt Lake City, Utah, United States of America
                University of Pennsylvania, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: WCP TEL JFL CMW. Performed the experiments: WCP AZ EH HT RC. Analyzed the data: WCP RC TEL JFL CMW. Contributed reagents/materials/analysis tools: RC TEL JFL CMW. Wrote the paper: WCP RC TEL JFL CMW.

                Article
                PONE-D-15-49554
                10.1371/journal.pone.0157620
                4911106
                27310015
                373cac1a-525f-4926-a202-0cb26d2d003b
                © 2016 Plaisted et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 November 2015
                : 2 June 2016
                Page count
                Figures: 8, Tables: 0, Pages: 20
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/100000065, National Institute of Neurological Disorders and Stroke;
                Award ID: R01NS092042
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000065, National Institute of Neurological Disorders and Stroke;
                Award ID: R01NS092042
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000065, National Institute of Neurological Disorders and Stroke;
                Award ID: NS082174
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000890, National Multiple Sclerosis Society;
                Award ID: CA1058
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000890, National Multiple Sclerosis Society;
                Award ID: RG4925
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000900, California Institute for Regenerative Medicine;
                Award ID: TR3-05603
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000900, California Institute for Regenerative Medicine;
                Award ID: TR3-05603
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/100000900, California Institute for Regenerative Medicine;
                Award ID: CL1-00502
                Award Recipient :
                This work was funded by National Institutes of Health Training Grant NS082174 to WCP; National Institutes of Health R01NS092042 to TEL, JFL; National Multiple Sclerosis Society RG4925 to TEL; California Institute for Regenerative Medicine TR3-05603 to CMW, JFL; California Institute for Regenerative Medicine CL1-00502 to JFL; National Multiple Sclerosis Society CA1058 to CMW. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Cell biology
                Cellular types
                Animal cells
                Blood cells
                White blood cells
                T cells
                Regulatory T cells
                Biology and life sciences
                Cell biology
                Cellular types
                Animal cells
                Immune cells
                White blood cells
                T cells
                Regulatory T cells
                Biology and life sciences
                Immunology
                Immune cells
                White blood cells
                T cells
                Regulatory T cells
                Medicine and health sciences
                Immunology
                Immune cells
                White blood cells
                T cells
                Regulatory T cells
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                T Cells
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Immune Cells
                White Blood Cells
                T Cells
                Biology and Life Sciences
                Immunology
                Immune Cells
                White Blood Cells
                T Cells
                Medicine and Health Sciences
                Immunology
                Immune Cells
                White Blood Cells
                T Cells
                Biology and Life Sciences
                Anatomy
                Nervous System
                Neuroanatomy
                Spinal Cord
                Medicine and Health Sciences
                Anatomy
                Nervous System
                Neuroanatomy
                Spinal Cord
                Biology and Life Sciences
                Neuroscience
                Neuroanatomy
                Spinal Cord
                Biology and Life Sciences
                Anatomy
                Nervous System
                Central Nervous System
                Medicine and Health Sciences
                Anatomy
                Nervous System
                Central Nervous System
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Connective Tissue Cells
                Fibroblasts
                Biology and Life Sciences
                Anatomy
                Biological Tissue
                Connective Tissue
                Connective Tissue Cells
                Fibroblasts
                Medicine and Health Sciences
                Anatomy
                Biological Tissue
                Connective Tissue
                Connective Tissue Cells
                Fibroblasts
                Medicine and Health Sciences
                Clinical Medicine
                Clinical Immunology
                Autoimmune Diseases
                Multiple Sclerosis
                Biology and Life Sciences
                Immunology
                Clinical Immunology
                Autoimmune Diseases
                Multiple Sclerosis
                Medicine and Health Sciences
                Immunology
                Clinical Immunology
                Autoimmune Diseases
                Multiple Sclerosis
                Medicine and Health Sciences
                Neurology
                Demyelinating Disorders
                Multiple Sclerosis
                Medicine and Health Sciences
                Neurology
                Neurodegenerative Diseases
                Multiple Sclerosis
                Biology and life sciences
                Cell biology
                Signal transduction
                Cell signaling
                Signaling cascades
                TGF-beta signaling cascade
                Biology and Life Sciences
                Developmental Biology
                Cell Differentiation
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article