27
views
0
recommends
+1 Recommend
1 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Phylogeny of the bee genus Halictus (Hymenoptera: halictidae) based on parsimony and likelihood analyses of nuclear EF-1alpha sequence data.

      Molecular Phylogenetics and Evolution
      Animals, Base Pairing, Bees, genetics, physiology, Genetic Variation, Genetics, Population, Introns, Likelihood Functions, Models, Molecular, Nuclear Proteins, Peptide Elongation Factor 1, Phylogeny, Sequence Alignment, methods

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigated higher-level phylogenetic relationships within the genus Halictus based on parsimony and maximum likelihood (ML) analysis of elongation factor-1alpha DNA sequence data. Our data set includes 41 OTUs representing 35 species of halictine bees from a diverse sample of outgroup genera and from the three widely recognized subgenera of Halictus (Halictus s.s., Seladonia, and Vestitohalictus). We analyzed 1513 total aligned nucleotide sites spanning three exons and two introns. Equal-weights parsimony analysis of the overall data set yielded 144 equally parsimonious trees. Major conclusions supported in this analysis (and in all subsequent analyses) included the following: (1) Thrincohalictus is the sister group to Halictus s.l., (2) Halictus s.l. is monophyletic, (3) Vestitohalictus renders Seladonia paraphyletic but together Seladonia + Vestitohalictus is monophyletic, (4) Michener's Groups 1 and 3 are monophyletic, and (5) Michener's Group 1 renders Group 2 paraphyletic. In order to resolve basal relationships within Halictus we applied various weighting schemes under parsimony (successive approximations character weighting and implied weights) and employed ML under 17 models of sequence evolution. Weighted parsimony yielded conflicting results but, in general, supported the hypothesis that Seladonia + Vestitohalictus is sister to Michener's Group 3 and renders Halictus s.s. paraphyletic. ML analyses using the GTR model with site-specific rates supported an alternative hypothesis: Seladonia + Vestitohalictus is sister to Halictus s.s. We mapped social behavior onto trees obtained under ML and parsimony in order to reconstruct the likely historical pattern of social evolution. Our results are unambiguous: the ancestral state for the genus Halictus is eusociality. Reversal to solitary behavior has occurred at least four times among the species included in our analysis. Copyright 1999 Academic Press.

          Related collections

          Author and article information

          Comments

          Comment on this article