3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Differential Tuning of Ventral and Dorsal Streams during the Generation of Common and Uncommon Tool Uses

      1 , 2 , 1
      Journal of Cognitive Neuroscience
      MIT Press - Journals

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Our use of tools is situated in different contexts. Prior evidence suggests that diverse regions within the ventral and dorsal streams represent information supporting common tool use. However, given the flexibility of object concepts, these regions may be tuned to different types of information when generating novel or uncommon uses of tools. To investigate this, we collected fMRI data from participants who reported common or uncommon tool uses in response to visually presented familiar objects. We performed a pattern dissimilarity analysis in which we correlated cortical patterns with behavioral measures of visual, action, and category information. The results showed that evoked cortical patterns within the dorsal tool use network reflected action and visual information to a greater extent in the uncommon use group, whereas evoked neural patterns within the ventral tool use network reflected categorical information more strongly in the common use group. These results reveal the flexibility of cortical representations of tool use and the situated nature of cortical representations more generally. </p>

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Grounded cognition.

          Grounded cognition rejects traditional views that cognition is computation on amodal symbols in a modular system, independent of the brain's modal systems for perception, action, and introspection. Instead, grounded cognition proposes that modal simulations, bodily states, and situated action underlie cognition. Accumulating behavioral and neural evidence supporting this view is reviewed from research on perception, memory, knowledge, language, thought, social cognition, and development. Theories of grounded cognition are also reviewed, as are origins of the area and common misperceptions of it. Theoretical, empirical, and methodological issues are raised whose future treatment is likely to affect the growth and impact of grounded cognition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Left ventrolateral prefrontal cortex and the cognitive control of memory.

            Cognitive control mechanisms permit memory to be accessed strategically, and so aid in bringing knowledge to mind that is relevant to current goals and actions. In this review, we consider the contribution of left ventrolateral prefrontal cortex (VLPFC) to the cognitive control of memory. Reviewed evidence supports a two-process model of mnemonic control, supported by a double dissociation among rostral regions of left VLPFC. Specifically, anterior VLPFC (approximately BA 47; inferior frontal gyrus pars orbitalis) supports controlled access to stored conceptual representations, whereas mid-VLPFC (approximately BA 45; inferior frontal gyrus pars triangularis) supports a domain-general selection process that operates post-retrieval to resolve competition among active representations. We discuss the contribution of these control mechanisms across a range of mnemonic domains, including semantic retrieval, recollection of contextual details about past events, resolution of proactive interference in working memory, and task switching. Finally, we consider open directions for future research into left VLPFC function and the cognitive control of memory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neural reuse: a fundamental organizational principle of the brain.

              An emerging class of theories concerning the functional structure of the brain takes the reuse of neural circuitry for various cognitive purposes to be a central organizational principle. According to these theories, it is quite common for neural circuits established for one purpose to be exapted (exploited, recycled, redeployed) during evolution or normal development, and be put to different uses, often without losing their original functions. Neural reuse theories thus differ from the usual understanding of the role of neural plasticity (which is, after all, a kind of reuse) in brain organization along the following lines: According to neural reuse, circuits can continue to acquire new uses after an initial or original function is established; the acquisition of new uses need not involve unusual circumstances such as injury or loss of established function; and the acquisition of a new use need not involve (much) local change to circuit structure (e.g., it might involve only the establishment of functional connections to new neural partners). Thus, neural reuse theories offer a distinct perspective on several topics of general interest, such as: the evolution and development of the brain, including (for instance) the evolutionary-developmental pathway supporting primate tool use and human language; the degree of modularity in brain organization; the degree of localization of cognitive function; and the cortical parcellation problem and the prospects (and proper methods to employ) for function to structure mapping. The idea also has some practical implications in the areas of rehabilitative medicine and machine interface design.
                Bookmark

                Author and article information

                Journal
                Journal of Cognitive Neuroscience
                Journal of Cognitive Neuroscience
                MIT Press - Journals
                0898-929X
                1530-8898
                November 2017
                November 2017
                : 29
                : 11
                : 1791-1802
                Affiliations
                [1 ]University of Pennsylvania
                [2 ]Moss Rehabilitation Research Institute, Elkins Park, PA
                Article
                10.1162/jocn_a_01161
                5623132
                28654359
                374ca31b-4215-44c7-8867-f7d1f9e5398f
                © 2017
                History

                Comments

                Comment on this article