3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Endothelium-dependent contractions and endothelial dysfunction in human hypertension.

      British Journal of Pharmacology
      Antihypertensive Agents, therapeutic use, Endothelins, drug effects, metabolism, physiology, Endothelium, Vascular, physiopathology, Humans, Hypertension, drug therapy, Models, Cardiovascular, Nitric Oxide, Prostaglandin-Endoperoxide Synthases, Vasodilation

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The endothelium is a crucial regulator of vascular physiology, producing in healthy conditions several substances with a potent antiatherosclerotic properties. Accordingly, the presence of endothelial dysfunction is associated with subclinical atherosclerosis and with an increased future risk of cardiovascular events. A large body of evidence supports the fundamental role of nitric oxide (NO) as the main endothelium-derived relaxing factor. However, in the presence of pathological conditions, such as hypertension, endothelial cells, in response to a number of agents and physical stimuli, become also a source of endothelium-derived contracting factors (EDCFs), including endothelins and angiotensin II and particularly cyclooxygenase-derived prostanoids and superoxide anions. These latter were at first identified as responsible for impaired endothelium-dependent vasodilation in patients with essential hypertension. However, cyclooxygenase-dependent EDCFs production is characteristic of the aging process, and essential hypertension seems to only anticipate the phenomenon. It is worth noting that both in aging and hypertension EDCF production is associated with a parallel decrease in NO availability, suggesting that this substance could be oxygen free radicals themselves. Accordingly, in hypertension both indomethacin, a cyclooxygenase inhibitor, and vitamin C, an antioxidant, increase the vasodilation to acetylcholine by restoring NO availability. In conclusion, hypertension is characterized by a decline in endothelial function, associated with a progressive decrease in NO bioavailability and increase in the production of EDCF. The mechanisms that regulate the balance between NO and EDCF, and the processes transforming the endothelium from a protective organ to a source of vasoconstrictor, proaggregatory and promitogenic mediators remain to be determined.

          Related collections

          Author and article information

          Comments

          Comment on this article