184
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Towards a better understanding of Lactobacillus rhamnosus GG - host interactions

      abstract
      1 , 2 , 1 , 2 ,
      Microbial Cell Factories
      BioMed Central
      11th International Symposium on Lactic Acid Bacteria
      31 August-4 September 2014
      Lactobacillus rhamnosus GG, probiotic, bacteria-host interactions, MAMP-PRR, immunomodulation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lactobacillus rhamnosus GG (LGG) is one of the most widely used probiotic strains. Various health effects are well documented including the prevention and treatment of gastro-intestinal infections and diarrhea, and stimulation of immune responses that promote vaccination or even prevent certain allergic symptoms. However, not all intervention studies could show a clinical benefit and even for the same conditions, the results are not univocal. Clearly, the host phenotype governed by age, genetics and environmental factors such as the endogenous microbiota, plays a role in whether individuals are responders or non-responders. However, we believe that a detailed knowledge of the bacterial physiology and the LGG molecules that play a key role in its host-interaction capacity is crucial for a better understanding of its potential health benefits. Molecules that were yet identified as important factors governing host interactions include its adhesive pili or fimbriae, its lipoteichoic acid molecules, its major secreted proteins and its galactose-rich exopolysaccharides, as well as specific DNA motifs. Nevertheless, future studies are needed to correlate specific health effects to these molecular effectors in LGG, and also in other probiotic strains.

          Related collections

          Most cited references145

          • Record: found
          • Abstract: found
          • Article: not found

          Enterotypes of the human gut microbiome.

          Our knowledge of species and functional composition of the human gut microbiome is rapidly increasing, but it is still based on very few cohorts and little is known about variation across the world. By combining 22 newly sequenced faecal metagenomes of individuals from four countries with previously published data sets, here we identify three robust clusters (referred to as enterotypes hereafter) that are not nation or continent specific. We also confirmed the enterotypes in two published, larger cohorts, indicating that intestinal microbiota variation is generally stratified, not continuous. This indicates further the existence of a limited number of well-balanced host-microbial symbiotic states that might respond differently to diet and drug intake. The enterotypes are mostly driven by species composition, but abundant molecular functions are not necessarily provided by abundant species, highlighting the importance of a functional analysis to understand microbial communities. Although individual host properties such as body mass index, age, or gender cannot explain the observed enterotypes, data-driven marker genes or functional modules can be identified for each of these host properties. For example, twelve genes significantly correlate with age and three functional modules with the body mass index, hinting at a diagnostic potential of microbial markers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A Toll-like receptor recognizes bacterial DNA.

            DNA from bacteria has stimulatory effects on mammalian immune cells, which depend on the presence of unmethylated CpG dinucleotides in the bacterial DNA. In contrast, mammalian DNA has a low frequency of CpG dinucleotides, and these are mostly methylated; therefore, mammalian DNA does not have immuno-stimulatory activity. CpG DNA induces a strong T-helper-1-like inflammatory response. Accumulating evidence has revealed the therapeutic potential of CpG DNA as adjuvants for vaccination strategies for cancer, allergy and infectious diseases. Despite its promising clinical use, the molecular mechanism by which CpG DNA activates immune cells remains unclear. Here we show that cellular response to CpG DNA is mediated by a Toll-like receptor, TLR9. TLR9-deficient (TLR9-/-) mice did not show any response to CpG DNA, including proliferation of splenocytes, inflammatory cytokine production from macrophages and maturation of dendritic cells. TLR9-/- mice showed resistance to the lethal effect of CpG DNA without any elevation of serum pro-inflammatory cytokine levels. The in vivo CpG-DNA-mediated T-helper type-1 response was also abolished in TLR9-/- mice. Thus, vertebrate immune systems appear to have evolved a specific Toll-like receptor that distinguishes bacterial DNA from self-DNA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens.

              How can probiotic bacteria transduce their health benefits to the host? Bacterial cell surface macromolecules are key factors in this beneficial microorganism-host crosstalk, as they can interact with host pattern recognition receptors (PRRs) of the gastrointestinal mucosa. In this Review, we highlight the documented signalling interactions of the surface molecules of probiotic bacteria (such as long surface appendages, polysaccharides and lipoteichoic acids) with PRRs. Research on host-probiotic interactions can benefit from well-documented host-microorganism studies that span the spectrum from pathogenicity to mutualism. Distinctions and parallels are therefore drawn with the interactions of similar molecules that are presented by gastrointestinal commensals and pathogens.
                Bookmark

                Author and article information

                Contributors
                Conference
                Microb Cell Fact
                Microb. Cell Fact
                Microbial Cell Factories
                BioMed Central
                1475-2859
                2014
                29 August 2014
                : 13
                : Suppl 1
                : S7
                Affiliations
                [1 ]University of Antwerp, Department of Bioscience Engineering, Research Group Environmental Ecology and Applied Microbiology, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
                [2 ]KU Leuven, Centre of Microbial and Plant Genetics, Kasteelpark Arenberg 20, box 2460, B- 3001 Leuven, Belgium
                Article
                1475-2859-13-S1-S7
                10.1186/1475-2859-13-S1-S7
                4155824
                25186587
                375b4190-22d5-4215-8d25-4a86ed0035ba
                Copyright © 2014 Segers and Lebeer; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                11th International Symposium on Lactic Acid Bacteria
                Egmond aan Zee, the Netherlands
                31 August-4 September 2014
                History
                Categories
                Proceedings

                Biotechnology
                lactobacillus rhamnosus gg,probiotic,bacteria-host interactions,mamp-prr,immunomodulation

                Comments

                Comment on this article