24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Point Mutation in p190A RhoGAP Affects Ciliogenesis and Leads to Glomerulocystic Kidney Defects

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rho family GTPases act as molecular switches regulating actin cytoskeleton dynamics. Attenuation of their signaling capacity is provided by GTPase-activating proteins (GAPs), including p190A, that promote the intrinsic GTPase activity of Rho proteins. In the current study we have performed a small-scale ENU mutagenesis screen and identified a novel loss of function allele of the p190A gene Arhgap35, which introduces a Leu1396 to Gln substitution in the GAP domain. This results in decreased GAP activity for the prototypical Rho-family members, RhoA and Rac1, likely due to disrupted ordering of the Rho binding surface. Consequently, Arhgap35-deficient animals exhibit hypoplastic and glomerulocystic kidneys. Investigation into the cystic phenotype shows that p190A is required for appropriate primary cilium formation in renal nephrons. P190A specifically localizes to the base of the cilia to permit axoneme elongation, which requires a functional GAP domain. Pharmacological manipulations further reveal that inhibition of either Rho kinase (ROCK) or F-actin polymerization is able to rescue the ciliogenesis defects observed upon loss of p190A activity. We propose a model in which p190A acts as a modulator of Rho GTPases in a localized area around the cilia to permit the dynamic actin rearrangement required for cilia elongation. Together, our results establish an unexpected link between Rho GTPase regulation, ciliogenesis and glomerulocystic kidney disease.

          Author Summary

          Glomerulocystic kidney disease occurs either in isolation or in combination with other cystic diseases. To date, the paucity of mouse models have impeded our progress in understanding the molecular mechanisms leading to glomerular cyst development. Using an ENU mutagenesis approach, we present here a novel mouse model of glomerular cyst formation caused by a point mutation in p190A RhoGAP ( Arhgap35), which is associated with aberrant primary ciliogenesis. The primary cilium is a microtubule-based signalling center involved in cell differentiation and homeostasis. A role for the actin cytoskeleton in ciliogenesis has recently emerged, but the underlying regulatory mechanisms remain poorly understood. In this study we identify a requirement for the local modulation of Rho GTPase by p190A RhoGAP during primary cilium formation, which constitutes the first demonstration of ciliogenic regulation by RhoGAP proteins. Together, this work identifies deficiencies in actin cytoskeletal dynamics as an underlying cause for ciliary and glomerulocystic malformations.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          The cellular basis of kidney development.

          Mammalian kidney development has helped elucidate the general concepts of mesenchymal-epithelial interactions, inductive signaling, epithelial cell polarization, and branching morphogenesis. Through the use of genetically engineered mouse models, the manipulation of Xenopus and chick embryos, and the identification of human renal disease genes, the molecular bases for many of the early events in the developing kidney are becoming increasingly clear. Early patterning of the kidney region depends on interactions between Pax/Eya/Six genes, with essential roles for lim1 and Odd1. Ureteric bud outgrowth and branching morphogenesis are controlled by the Ret/Gdnf pathway, which is subject to positive and negative regulation by a variety of factors. A clear role for Wnt proteins in induction of the kidney mesenchyme is now well established and complements the classic literature nicely. Patterning along the proximal distal axis as the nephron develops is now being investigated and must involve aspects of Notch signaling. The development of a glomerulus requires interactions between epithelial cells and infiltrating endothelial cells to generate a unique basement membrane. The integrity of the glomerular filter depends in large part on the proteins of the nephrin complex, localized to the slit diaphragm. Despite the kidney's architectural complexity, with the advent of genomics and expression arrays, it is becoming one of the best-characterized organ systems in developmental biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glomerulocystic kidney disease in mice with a targeted inactivation of Wwtr1.

            Wwtr1 is a widely expressed 14-3-3-binding protein that regulates the activity of several transcription factors involved in development and disease. To elucidate the physiological role of Wwtr1, we generated Wwtr1-/- mice by homologous recombination. Surprisingly, although Wwtr1 is known to regulate the activity of Cbfa1, a transcription factor important for bone development, Wwtr1-/- mice show only minor skeletal defects. However, Wwtr1-/- animals present with renal cysts that lead to end-stage renal disease. Cysts predominantly originate from the dilation of Bowman's spaces and atrophy of glomerular tufts, reminiscent of glomerulocystic kidney disease in humans. A smaller fraction of cysts is derived from tubules, in particular the collecting duct (CD). The corticomedullary accumulation of cysts also shows similarities with nephronophthisis. Cells lining the cysts carry fewer and shorter cilia and the expression of several genes associated with glomerulocystic kidney disease (Ofd1 and Tsc1) or encoding proteins involved in cilia structure and/or function (Tg737, Kif3a, and Dctn5) is decreased in Wwtr1-/- kidneys. The loss of cilia integrity and the down-regulation of Dctn5, Kif3a, Pkhd1 and Ofd1 mRNA expression can be recapitulated in a renal CD epithelial cell line, mIMCD3, by reducing Wwtr1 protein levels using siRNA. Thus, Wwtr1 is critical for the integrity of renal cilia and its absence in mice leads to the development of renal cysts, indicating that Wwtr1 may represent a candidate gene for polycystic kidney disease in humans.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Ras and Rho GTPases: a family reunion.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, CA USA )
                1553-7390
                1553-7404
                9 February 2016
                February 2016
                : 12
                : 2
                : e1005785
                Affiliations
                [1 ]Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
                [2 ]Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
                [3 ]Department of Anatomy and Cell Biology, McGill University, and Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
                [4 ]Department of Human Genetics and Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
                Seattle Children's Research Institute, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: KS YG MB. Performed the experiments: KS YG MERS LA DH MT HI YCT. Analyzed the data: KS YG MB. Contributed reagents/materials/analysis tools: SV TT NLV. Wrote the paper: KS MB. Performed the ENU mutagenesis screen: YG KS MERS DH RS MM DS SKB AHTN.

                Article
                PGENETICS-D-15-01661
                10.1371/journal.pgen.1005785
                4747337
                26859289
                376392b2-7bd2-4f56-950d-0f307fec5736
                © 2016 Stewart et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 July 2015
                : 12 December 2015
                Page count
                Figures: 7, Tables: 1, Pages: 20
                Funding
                This work was supported by the Kidney Foundation of Canada. MB holds a Senior Research Scholar Award from Fonds de la Recherche du Québec-Santé (FRQS). KS holds FRQS and MICRTP-CIHR doctoral awards. MERS and RS hold McGill University Faculty of Medicine Internal Studentships. MT holds FRQS and CRS postdoctoral fellowships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of this manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Cilia
                Biology and Life Sciences
                Anatomy
                Renal System
                Kidneys
                Medicine and Health Sciences
                Anatomy
                Renal System
                Kidneys
                Biology and Life Sciences
                Developmental Biology
                Embryology
                Embryos
                Biology and Life Sciences
                Anatomy
                Renal System
                Kidneys
                Glomeruli
                Medicine and Health Sciences
                Anatomy
                Renal System
                Kidneys
                Glomeruli
                Biology and Life Sciences
                Cell Biology
                Cellular Structures and Organelles
                Cytoskeleton
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Connective Tissue Cells
                Fibroblasts
                Biology and Life Sciences
                Anatomy
                Biological Tissue
                Connective Tissue
                Connective Tissue Cells
                Fibroblasts
                Medicine and Health Sciences
                Anatomy
                Biological Tissue
                Connective Tissue
                Connective Tissue Cells
                Fibroblasts
                Research and Analysis Methods
                Specimen Preparation and Treatment
                Staining
                Immunofluorescence Staining
                Biology and Life Sciences
                Biochemistry
                Proteins
                Contractile Proteins
                Actins
                Biology and Life Sciences
                Biochemistry
                Proteins
                Cytoskeletal Proteins
                Actins
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Genetics
                Genetics

                Comments

                Comment on this article