Blog
About

5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A synthetic polymer system with repeatable chemical recyclability

      , , ,

      Science

      American Association for the Advancement of Science (AAAS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 52

          • Record: found
          • Abstract: found
          • Article: not found

          Physico-mechanical properties of degradable polymers used in medical applications: a comparative study.

           J Köhn,  I Engelberg (1991)
          The physico-mechanical properties of degradable polymers used for medical applications have been characterized. The following polymers were included in this study: three samples of poly(ortho esters) derived from 3,9-bis(ethylidene 2,4,8,10-tetraoxaspiro[5,5]undecane) and various ratios of 1,6-hexanediol and trans-cyclohexane dimethanol, poly(glycolic acid), six samples of poly(L-lactic acid) and poly(D,L-lactic acid) with mol wt from 21,000 to 550,000, poly(epsilon-caprolactone), poly(beta-hydroxybutyrate) and three copolymers of beta-hydroxybutyric acid and various amounts of hydroxyvaleric acid, one sample each of two different types of poly(anhydrides), poly(trimethylene carbonate) and two different poly(imino-carbonates). For each polymer, the thermal properties (glass transition temperature, crystallization, melting and decomposition points) were determined by differential scanning calorimetry and by thermogravimetric analysis. The tensile properties (Young's modulus, tensile strength and elongation at yield and break) were determined by tensile testing on an Instron stress-strain tester. The flexural storage modulus as a function of temperature was determined by dynamic mechanical analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An "endless" route to cyclic polymers.

            A new synthetic route to cyclic polymers has been developed in which the ends of growing polymer chains remain attached to a metal complex throughout the entire polymerization process. The approach eliminates the need for linear polymeric precursors and high dilution, drawbacks of traditional macrocyclization strategies, and it effectively removes the barrier to producing large quantities of pure cyclic material. Ultimately, the strategy offers facile access to a unique macromolecular scaffold that may be used to meet the increasing demand of new applications for commercial polymers. As a demonstration of its potential utility, cyclic polyethylenes were prepared and found to exhibit a variety of physical properties that were distinguishable from their linear analogs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A bacterium that degrades and assimilates poly(ethylene terephthalate).

              Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                April 26 2018
                April 26 2018
                April 27 2018
                : 360
                : 6387
                : 398-403
                10.1126/science.aar5498
                © 2018

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                Comments

                Comment on this article