15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nitric Oxide: From Good to Bad

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This essay summarizes a lecture presented on October 19th, 2017, during the 58th Annual Meeting of the Japanese College of Angiology in Nagoya, Japan. The lecture summarizes several instances where the absence of relaxations of isolated blood vessels in response to endothelium-dependent vasodilator agonists, which cause activation of endothelial nitric oxide synthase (eNOS) and consequent production of endothelium-derived nitric oxide (NO) and stimulation of soluble guanylyl cyclase (sGC) in underlying vascular smooth muscle, or hypoxia are curtailed or reversed to endothelium-dependent contractions. Chosen examples include selective dysfunction of eNOS activation in regenerated endothelial cells, unresponsiveness of vascular smooth muscle cells to NO during subarachnoid hemorrhage, and biased activation of sGC in vascular smooth muscle cells during acute exposure to hypoxia. The main message of this essay is that absence, blunting, or reversal of endothelium-dependent relaxations in response to vasodilator agonists cannot necessarily be interpreted as a sign of endothelial dysfunction. (This is a review article based on the invited lecture of the 58th Annual Meeting of Japanese College of Angiology.)

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine.

          Despite its very potent vasodilating action in vivo, acetylcholine (ACh) does not always produce relaxation of isolated preparations of blood vessels in vitro. For example, in the helical strip of the rabbit descending thoracic aorta, the only reported response to ACh has been graded contractions, occurring at concentrations above 0.1 muM and mediated by muscarinic receptors. Recently, we observed that in a ring preparation from the rabbit thoracic aorta, ACh produced marked relaxation at concentrations lower than those required to produce contraction (confirming an earlier report by Jelliffe). In investigating this apparent discrepancy, we discovered that the loss of relaxation of ACh in the case of the strip was the result of unintentional rubbing of its intimal surface against foreign surfaces during its preparation. If care was taken to avoid rubbing of the intimal surface during preparation, the tissue, whether ring, transverse strip or helical strip, always exhibited relaxation to ACh, and the possibility was considered that rubbing of the intimal surface had removed endothelial cells. We demonstrate here that relaxation of isolated preparations of rabbit thoracic aorta and other blood vessels by ACh requires the presence of endothelial cells, and that ACh, acting on muscarinic receptors of these cells, stimulates release of a substance(s) that causes relaxation of the vascular smooth muscle. We propose that this may be one of the principal mechanisms for ACh-induced vasodilation in vivo. Preliminary reports on some aspects of the work have been reported elsewhere.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thirty Years of Saying NO: Sources, Fate, Actions, and Misfortunes of the Endothelium-Derived Vasodilator Mediator.

            Endothelial cells control vascular tone by releasing nitric oxide (NO) produced by endothelial NO synthase. The activity of endothelial NO synthase is modulated by the calcium concentration and by post-translational modifications (eg, phosphorylation). When NO reaches vascular smooth muscle, soluble guanylyl cyclase is its primary target producing cGMP. NO production is stimulated by circulating substances (eg, catecholamines), platelet products (eg, serotonin), autacoids formed in (eg, bradykinin) or near (eg, adiponectin) the vascular wall and physical factors (eg, shear stress). NO dysfunction can be caused, alone or in combination, by abnormal coupling of endothelial cell membrane receptors, insufficient supply of substrate (l-arginine) or cofactors (tetrahydrobiopterin), endogenous inhibitors (asymmetrical dimethyl arginine), reduced expression/presence/dimerization of endothelial NO synthase, inhibition of its enzymatic activity, accelerated disposition of NO by reactive oxygen species and abnormal responses (eg, biased soluble guanylyl cyclase activity producing cyclic inosine monophosphate) of the vascular smooth muscle. Major culprits causing endothelial dysfunction, irrespective of the underlying pathological process (aging, obesity, diabetes mellitus, and hypertension), include stimulation of mineralocorticoid receptors, activation of endothelial Rho-kinase, augmented presence of asymmetrical dimethyl arginine, and exaggerated oxidative stress. Genetic and pharmacological interventions improve dysfunctional NO-mediated vasodilatations if protecting the supply of substrate and cofactors for endothelial NO synthase, preserving the presence and activity of the enzyme and reducing reactive oxygen species generation. Common achievers of such improvement include maintained levels of estrogens and increased production of adiponectin and induction of silent mating-type information regulation 2 homologue 1. Obviously, endothelium-dependent relaxations are not the only beneficial action of NO in the vascular wall. Thus, reduced NO-mediated responses precede and initiate the atherosclerotic process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Endothelium-derived relaxing and contracting factors.

              Endothelium-dependent relaxation of blood vessels is produced by a large number of agents (e.g., acetylcholine, ATP and ADP, substance P, bradykinin, histamine, thrombin, serotonin). With some agents, relaxation may be limited to certain species and/or blood vessels. Relaxation results from release of a very labile non-prostanoid endothelium-derived relaxing factor (EDRF) or factors. EDRF stimulates guanylate cyclase of the vascular smooth muscle, with the resulting increase in cyclic GMP activating relaxation. EDRF is rapidly inactivated by hemoglobin and superoxide. There is strong evidence that EDRF from many blood vessels and from cultured endothelial cells is nitric oxide (NO) and that its precursor is L-arginine. There is evidence for other relaxing factors, including an endothelium-derived hyperpolarizing factor in some vessels. Flow-induced shear stress also stimulates EDRF release. Endothelium-dependent relaxation occurs in resistance vessels as well as in larger arteries, and is generally more pronounced in arteries than veins. EDRF also inhibits platelet aggregation and adhesion to the blood vessel wall. Endothelium-derived contracting factors appear to be responsible for endothelium-dependent contractions produced by arachidonic acid and hypoxia in isolated systemic vessels and by certain agents and by rapid stretch in isolated cerebral vessels. In all such experiments, the endothelium-derived contracting factor appears to be some product or by-product of cyclooxygenase activity. Recently, endothelial cells in culture have been found to synthesize a peptide, endothelin, which is an extremely potent vasoconstrictor. The possible physiological roles and pathophysiological significance of endothelium-derived relaxing and contracting factors are briefly discussed.
                Bookmark

                Author and article information

                Journal
                Ann Vasc Dis
                Ann Vasc Dis
                avd
                Annals of Vascular Diseases
                Japanese College of Angiology / The Japanese Society for Vascular Surgery / Japanese Society of Phlebology (Italian Cultural Institute Building 8F, Kudan-Minami 2-1-30, Chiyoda-ku, Tokyo 102-0074, Japan )
                1881-641X
                1881-6428
                25 March 2018
                : 11
                : 1
                : 41-51
                Affiliations
                [1 ]State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, HKSAR, China
                Author notes
                [*]Corresponding author: Paul M. Vanhoutte, MD, PhD. State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, HKSAR, China Tel: +852-9049-2727, Fax: +852-2817-0859, E-mail: vanhoutt@ 123456hku.hk
                Article
                10.3400/avd.ra.17-00134
                5882356
                29682106
                37983719-f3ed-4bcf-aa71-8dd74998ea22
                Copyright © 2018 The Editorial Committee of Annals of Vascular Diseases

                This article is distributed under the terms of the Creative Commons Attribution License, which permits use, distribution, and reproduction in any medium, provided the credit of the original work, a link to the license, and indication of any change are properly given, and the original work is not used for commercial purposes. Remixed or transformed contributions must be distributed under the same license as the original.

                History
                : 18 December 2017
                : 19 December 2017
                Categories
                Review Article

                endothelium,endothelial nitric oxide synthase,nitric oxide,soluble guanylyl cyclase,vascular smooth muscle

                Comments

                Comment on this article