23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plant phloem sterol content: forms, putative functions, and implications for phloem-feeding insects

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          All eukaryotes contain sterols, which serve as structural components in cell membranes, and as precursors for important hormones. Plant vegetative tissues are known to contain mixtures of sterols, but very little is known about the sterol composition of phloem. Plants are food for many animals, but plant-feeding arthropods (including phloem-feeding insets) are unique among animals in that they have lost the ability to synthesize sterols, and must therefore acquire these essential nutrients from their food, or via endosymbionts. Our paper starts by providing a very brief overview of variation in plant sterol content, and how different sterols can affect insect herbivores, including those specializing on phloem. We then describe an experiment, where we bulk collected phloem sap exudate from bean and tobacco, and analyzed its sterol content. This approach revealed two significant observations concerning phloem sterols. First, the phloem exudate from each plant was found to contain sterols in three different fractions – free sterols, sterols conjugated to lipids (acylated), and sterols conjugated to carbohydrates (glycosylated). Second, for both plants, cholesterol was identified as the dominant sterol in each phloem exudate fraction; the remaining sterols in each fraction were a mixture of common phytosterols. We discuss our phloem exudate sterol profiles in a plant physiology/biochemistry context, and how it relates to the nutritional physiology/ecology of phloem-feeding insects. We close by proposing important next steps that will advance our knowledge concerning plant phloem sterol biology, and how phloem-sterol content might affect phloem-feeding insects.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses.

          Phytosterols (plant sterols) are triterpenes that are important structural components of plant membranes, and free phytosterols serve to stabilize phospholipid bilayers in plant cell membranes just as cholesterol does in animal cell membranes. Most phytosterols contain 28 or 29 carbons and one or two carbon-carbon double bonds, typically one in the sterol nucleus and sometimes a second in the alkyl side chain. Phytostanols are a fully-saturated subgroup of phytosterols (contain no double bonds). Phytostanols occur in trace levels in many plant species and they occur in high levels in tissues of only in a few cereal species. Phytosterols can be converted to phytostanols by chemical hydrogenation. More than 200 different types of phytosterols have been reported in plant species. In addition to the free form, phytosterols occur as four types of "conjugates," in which the 3beta-OH group is esterified to a fatty acid or a hydroxycinnamic acid, or glycosylated with a hexose (usually glucose) or a 6-fatty-acyl hexose. The most popular methods for phytosterol analysis involve hydrolysis of the esters (and sometimes the glycosides) and capillary GLC of the total phytosterols, either in the free form or as TMS or acetylated derivatives. Several alternative methods have been reported for analysis of free phytosterols and intact phytosteryl conjugates. Phytosterols and phytostanols have received much attention in the last five years because of their cholesterol-lowering properties. Early phytosterol-enriched products contained free phytosterols and relatively large dosages were required to significantly lower serum cholesterol. In the last several years two spreads, one containing phytostanyl fatty-acid esters and the other phytosteryl fatty-acid esters, have been commercialized and were shown to significantly lower serum cholesterol at dosages of 1-3 g per day. The popularity of these products has caused the medical and biochemical community to focus much attention on phytosterols and consequently research activity on phytosterols has increased dramatically.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of sterol synthesis in eukaryotes.

            Cholesterol is an essential component of mammalian cell membranes and is required for proper membrane permeability, fluidity, organelle identity, and protein function. Cells maintain sterol homeostasis by multiple feedback controls that act through transcriptional and posttranscriptional mechanisms. The membrane-bound transcription factor sterol regulatory element binding protein (SREBP) is the principal regulator of both sterol synthesis and uptake. In mammalian cells, the ER membrane protein Insig has emerged as a key component of homeostatic regulation by controlling both the activity of SREBP and the sterol-dependent degradation of the biosynthetic enzyme HMG-CoA reductase. In this review, we focus on recent advances in our understanding of the molecular mechanisms of the regulation of sterol synthesis. A comparative analysis of SREBP and HMG-CoA reductase regulation in mammals, yeast, and flies points toward an equilibrium model for how lipid signals regulate the activity of sterol-sensing proteins and their downstream effectors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Amino acid composition and nutritional quality of potato leaf phloem sap for aphids.

              To define plant 'nutritional quality' for aphids, the causal basis of the variation in aphid performance between host plants of different developmental ages was explored using the aphids Myzus persicae and Macrosiphum euphorbiae on potato plants (Solanum tuberosum). Both aphid species performed better on developmentally young ('pre-tuber-filling') plants than on mature ('tuber-filling') plants. Aphid performance did not vary with leaf phloem sucrose:amino acid ratio but could be related to changes in the amino acid composition of the phloem, which included a developmental shift from high glutamine levels in pre-tuber-filling plants to low glutamine levels in tuber-filling plants. Aphid performance on chemically defined 'young' and 'old' diets, with amino acid composition corresponding to that of phloem amino acid composition in pre-tuber-filling and tuber-filling plants, respectively, confirmed that phloem amino acid composition contributed to low aphid performance on tuber-filling plants. The relatively poor performance on 'old' diets could be accounted for, at least in part, by depressed feeding rates. These data suggest that amino acid composition of the phloem is one factor shaping the nutritional quality of plants for aphids.
                Bookmark

                Author and article information

                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                24 September 2013
                2013
                : 4
                : 370
                Affiliations
                [1] 1Department of Entomology, Texas A&M University, College Station TX, USA
                [2] 2Department of Biology, Canisius College Buffalo, NY, USA
                Author notes

                Edited by: Gary A. Thompson, Pennsylvania State University, USA

                Reviewed by: Ján A. Miernyk, University of Missouri, USA; Thomas Günther-Pomorski, University of Copenhagen, Denmark

                *Correspondence: Spencer T. Behmer, Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX 77845-2475, USA e-mail: s-behmer@ 123456tamu.edu

                This article was submitted to Plant Physiology, a section of the journal Frontiers in Plant Science.

                Article
                10.3389/fpls.2013.00370
                3781331
                24069026
                379d3069-d982-4601-90af-8be3b683728b
                Copyright © Behmer, Olszewski, Sebastiani, Palka, Sparacino, Sciarrno and Grebenok.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 07 April 2013
                : 29 August 2013
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 52, Pages: 7, Words: 0
                Categories
                Plant Science
                Original Research Article

                Plant science & Botany
                aphids,bean,cholesterol,hemiptera,insect nutritional physiology,phytosterols,tobacco

                Comments

                Comment on this article