92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Insular Cortex Mediates Approach and Avoidance Responses to Social Affective Stimuli

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Social animals detect the affective states of conspecifics and utilize this information to orchestrate social interactions. In a novel social affective preference text in which experimental adult male rats could interact with either naive or stressed conspecifics, the experimental rats either approached or avoided the stressed conspecific, depending upon the age of the conspecific. Specifically, experimental rats approached stressed juveniles but avoided stressed adults. Inhibition of insular cortex, which is implicated in social cognition, and blockade of insular oxytocin receptors disrupted the social affective behaviors. Oxytocin application increased intrinsic excitability and synaptic efficacy in acute insular cortex slices, and insular oxytocin administration recapitulated the behaviors observed toward stressed conspecifics. Network analysis of Fos immunoreactivity in 29 regions identified functional connectivity between insular cortex, prefrontal cortex, amygdala and the social decision-making network. These results implicate insular cortex as a key component in the circuit underlying age-dependent social responses to stressed conspecifics.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Modularity and community structure in networks

          M. Newman (2006)
          Many networks of interest in the sciences, including a variety of social and biological networks, are found to divide naturally into communities or modules. The problem of detecting and characterizing this community structure has attracted considerable recent attention. One of the most sensitive detection methods is optimization of the quality function known as "modularity" over the possible divisions of a network, but direct application of this method using, for instance, simulated annealing is computationally costly. Here we show that the modularity can be reformulated in terms of the eigenvectors of a new characteristic matrix for the network, which we call the modularity matrix, and that this reformulation leads to a spectral algorithm for community detection that returns results of better quality than competing methods in noticeably shorter running times. We demonstrate the algorithm with applications to several network data sets.
            • Record: found
            • Abstract: found
            • Article: not found

            Oxytocin, vasopressin, and the neurogenetics of sociality.

            There is growing evidence that the neuropeptides oxytocin and vasopressin modulate complex social behavior and social cognition. These ancient neuropeptides display a marked conservation in gene structure and expression, yet diversity in the genetic regulation of their receptors seems to underlie natural variation in social behavior, both between and within species. Human studies are beginning to explore the roles of these neuropeptides in social cognition and behavior and suggest that variation in the genes encoding their receptors may contribute to variation in human social behavior by altering brain function. Understanding the neurobiology and neurogenetics of social cognition and behavior has important implications, both clinically and for society.
              • Record: found
              • Abstract: found
              • Article: not found

              Social reward requires coordinated activity of accumbens oxytocin and 5HT

              Social behaviors in species as diverse as honey bees and humans promote group survival but often come at some cost to the individual. Although reinforcement of adaptive social interactions is ostensibly required for the evolutionary persistence of these behaviors, the neural mechanisms by which social reward is encoded by the brain are largely unknown. Here we demonstrate that in mice oxytocin (OT) acts as a social reinforcement signal within the nucleus accumbens (NAc) core, where it elicits a presynaptically expressed long-term depression of excitatory synaptic transmission in medium spiny neurons. Although the NAc receives OT receptor-containing inputs from several brain regions, genetic deletion of these receptors specifically from dorsal raphe nucleus, which provides serotonergic (5-HT) innervation to the NAc, abolishes the reinforcing properties of social interaction. Furthermore, OT-induced synaptic plasticity requires activation of NAc 5-HT1b receptors, the blockade of which prevents social reward. These results demonstrate that the rewarding properties of social interaction in mice require the coordinated activity of OT and 5-HT in the NAc, a mechanistic insight with implications for understanding the pathogenesis of social dysfunction in neuropsychiatric disorders such as autism.

                Author and article information

                Journal
                9809671
                21092
                Nat Neurosci
                Nat. Neurosci.
                Nature neuroscience
                1097-6256
                1546-1726
                8 January 2018
                29 January 2018
                March 2018
                29 July 2018
                : 21
                : 3
                : 404-414
                Affiliations
                [1 ]Department of Psychology, Boston College, Chestnut Hill, MA, USA
                Author notes
                [* ] Corresponding Author: John P. Christianson, Department of Psychology, Boston College, Chestnut Hill, MA, USA, j.christianson@ 123456bc.edu , Phone: +1-617-552-3970
                [2]

                These authors made equal contributions to this work

                Article
                NIHMS930364
                10.1038/s41593-018-0071-y
                6051351
                29379116
                37a07953-eb9f-41f2-959c-bea572a37e43

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Neurosciences
                insular cortex,rat,empathy,oxytocin,intrinsic excitability,affect,graph theory,social decision-making

                Comments

                Comment on this article

                Related Documents Log