7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Advancements in the preparation of high-performance liquid chromatographic organic polymer monoliths for the separation of small-molecule drugs

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The various advantages of organic polymer monoliths, including relatively simple preparation processes, abundant monomer availability, and a wide application range of pH, have attracted the attention of chromatographers. Organic polymer monoliths prepared by traditional methods only have macropores and mesopores, and micropores of less than 50 nm are not commonly available. These typical monoliths are suitable for the separation of biological macromolecules such as proteins and nucleic acids, but their ability to separate small molecular compounds is poor. In recent years, researchers have successfully modified polymer monoliths to achieve uniform compact pore structures. In particular, microporous materials with pores of 50 nm or less that can provide a large enough surface area are the key to the separation of small molecules. In this review, preparation methods of polymer monoliths for high-performance liquid chromatography, including ultra-high cross-linking technology, post-surface modification, and the addition of nanomaterials, are discussed. Modified monolithic columns have been used successfully to separate small molecules with obvious improvements in column efficiency.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          Ionic-liquid materials for the electrochemical challenges of the future.

          Ionic liquids are room-temperature molten salts, composed mostly of organic ions that may undergo almost unlimited structural variations. This review covers the newest aspects of ionic liquids in applications where their ion conductivity is exploited; as electrochemical solvents for metal/semiconductor electrodeposition, and as batteries and fuel cells where conventional media, organic solvents (in batteries) or water (in polymer-electrolyte-membrane fuel cells), fail. Biology and biomimetic processes in ionic liquids are also discussed. In these decidedly different materials, some enzymes show activity that is not exhibited in more traditional systems, creating huge potential for bioinspired catalysis and biofuel cells. Our goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas. As well as informing materials scientists, we hope to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Click Chemistry: Diverse Chemical Function from a Few Good Reactions.

            Examination of nature's favorite molecules reveals a striking preference for making carbon-heteroatom bonds over carbon-carbon bonds-surely no surprise given that carbon dioxide is nature's starting material and that most reactions are performed in water. Nucleic acids, proteins, and polysaccharides are condensation polymers of small subunits stitched together by carbon-heteroatom bonds. Even the 35 or so building blocks from which these crucial molecules are made each contain, at most, six contiguous C-C bonds, except for the three aromatic amino acids. Taking our cue from nature's approach, we address here the development of a set of powerful, highly reliable, and selective reactions for the rapid synthesis of useful new compounds and combinatorial libraries through heteroatom links (C-X-C), an approach we call "click chemistry". Click chemistry is at once defined, enabled, and constrained by a handful of nearly perfect "spring-loaded" reactions. The stringent criteria for a process to earn click chemistry status are described along with examples of the molecular frameworks that are easily made using this spartan, but powerful, synthetic strategy.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Structure and properties of hypercrosslinked polystyrene—the first representative of a new class of polymer networks

                Bookmark

                Author and article information

                Contributors
                Journal
                J Pharm Anal
                J Pharm Anal
                Journal of Pharmaceutical Analysis
                Xi'an Jiaotong University
                2095-1779
                2214-0883
                13 March 2018
                April 2018
                13 March 2018
                : 8
                : 2
                : 75-85
                Affiliations
                [a ]Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China
                [b ]Lanzhou Universty-Techcomp (China) Ltd. Joint Laboratory of Pharmaceutical Analysis, Lanzhou, Gansu 730000, PR China
                Author notes
                [* ]Corresponding author at: Institute of Pharmaceutical Analysis, School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, PR China. dongym@ 123456lzu.edu.cn
                Article
                S2095-1779(18)30008-X
                10.1016/j.jpha.2018.02.001
                5934735
                37a3b6c6-e967-464c-9056-2c8c86c342d0
                © 2018 Xi'an Jiaotong University. Production and hosting by Elsevier B.V.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 27 January 2017
                : 26 January 2018
                : 1 February 2018
                Categories
                Review Paper

                high-performance liquid chromatography,polymer monolith,preparation methods,small molecules

                Comments

                Comment on this article